Platinum Plus and Platinum Junior
Controllers
WARRANTY & LIMITATION OF LIABILITY

1. ROTEM warrants that the product shall be free of defects in materials or workmanship and will conform to the technical specification for a period of 1 (one) year from the date of initial installation on site (the "warranty period").

2. Load cells are not covered by ROTEM’s warranty.

3. ROTEM warrants that during said warranty period, any item/items or part/parts of equipment found defective with respect to materials or workmanship or which do not conform to the technical specification shall be repaired or replaced (at ROTEM's sole discretion), free of charge.

4. During the warranty period, in the event of an alleged defect, authorized resellers in relevant regions should be notified as soon as possible from the date of noticing the said defect, but no longer than thirty (30) days from such a discovery. The report shall include (1) a short description of the defects noticed (2) type of card / component and its matching serial number.

5. ROTEM's sole liability under this warranty is the repair or replacement of the defective item of product.

CONDITIONS AND LIMITATIONS

1. ROTEM will not be responsible for any labor costs or expenses associated with replacement of defective items or other parts of the product or repair.

2. This warranty shall not cover: (i) product or part therein which has been modified (without prior written approval of ROTEM), or (ii) product or part therein which has not handled or installed by an authorized reseller of ROTEM or (iii) product or part therein which has either handled or installed not in strict accordance with ROTEM's instructions, (iv) products which were used for function other than agriculture industry.

3. This warranty will not apply in the following cases: (i) if all components of the product are not originally supplied by ROTEM (ii) the defect is the result of an act of nature, lighting strikes, electrical power surge or interruption of electricity (iii) the defect is the result of accident, misuse, abuse, alteration, neglect, improper or unauthorized maintenance or repair.

ROTEM warns and alerts all users that the Product is inherently complex and may not be completely free of errors. ROTEM's products are designed and manufactured to provide reliable operation. Strict tests and quality control procedures are applied to every product. However, the possibility that something may fail beyond our control exists. Since these products are designed to operate climate control and other systems in confined livestock environments, where failure may cause severe damage, the user should provide adequate backup and alarm systems. These are to operate critical systems even in case of a ROTEM system failure. Neglecting to provide such a backup will be regarded as the user's willingness to accept the risk of loss, injury and financial damage.

In no event will ROTEM be liable to a user or any third party for any direct, indirect, special, consequential or incidental damages, including but not limited to any damage or injury to business earnings, lost profits or goodwill, personal injury, costs of delay, any failure of delivery, costs of lost or damaged data or documentation, lost or damaged products or goods, lost sales, lost orders, lost income.

Except for the above express warranty, ROTEM makes no other warranties, express or implied, relating to the products. ROTEM disclaims and excludes the implied warranties of merchantability and fitness for a particular purpose. No person is authorized to make any other warranty or representation concerning the performance of the products other than as provided by ROTEM.

Software Version: 3.00, 3.02, 3.03, 4.03, 4.04, 4.05, 3.06/4.06
Document Version: 2.9
Table of Contents

1 Front Matter .. 7
 1.1 Introduction... 7
 1.2 Conventions .. 7
 1.3 Contact Information .. 7
 1.4 Document Information ... 7

2 Introduction to Precision Mode .. 9
 2.1 Precision Ventilation - A Quick Look.. 9
 2.2 Front Panel .. 11
 2.3 Keypad .. 11
 2.4 Relay Switches .. 12
 2.5 Hot Screens .. 12
 2.6 Standard Display ... 14
 2.7 Main Menu Icons .. 15
 2.8 Version History .. 16

3 Control Menu .. 17
 3.1 Temperature Curve ... 17
 3.1.1 Temperature Curve Help | Set Definitions ... 17
 3.1.2 Radiant Heaters Help | Set Definitions .. 19
 3.1.3 Variable Heater Help | Set Definitions .. 20
 3.2 Humidity Treatment .. 21
 3.2.1 Humidity Treatment Help | Set Definitions .. 22
 3.3 CO2 Treatment .. 22
 3.3.1 CO2 Treatment Help | Set Definitions .. 23
 3.4 Min/Max Level .. 23
 3.4.1 By Day and By Days Curve .. 24
 3.4.2 By Time ... 24
 3.4.3 Day Soft Min. .. 24
 3.4.4 By Weight .. 25
 3.5 Static Pressure ... 28
 3.5.1 Disabling the Static Pressure Sensor ... 28
 3.5.2 Static Pressure Help | Set Definitions .. 29
 3.6 Control Mode ... 30
 3.7 System Parameters .. 30

4 Device Menu ... 31
 4.1 Levels of Ventilation .. 32
 4.1.1 Levels of Ventilation Help | Set Definitions .. 33
 4.2 Speed Fan Levels .. 34
 4.3 Vent & Curtain Levels .. 34
 4.3.1 Vent & Curtain Levels Help | Set Definitions .. 35
 4.4 Stir Fan Levels .. 36
 4.5 Stir Fan Program .. 37
 4.5.1 Stir Fan Program Help | Set Definitions Version 4.05 .. 37
 4.5.2 Stir Fan Program Help | Set Definitions Version 4.03 and Below 38
 4.6 Cool Pad ... 40
 4.6.1 Cool Pad Help | Set Definitions .. 41
4.7 Foggers ... 42
 4.7.1 Foggers Help | Set Definitions ... 42
4.8 Light ... 43
 4.8.1 Light Help | Set Definitions ... 44
4.9 Water & Feed .. 46
 4.9.1 Water and Feed Help | Set Definitions ... 46
4.10 Extra Systems ... 47
4.11 Emergency Setting ... 48
 4.11.1 Emergency Setting Help | Set Definitions .. 49
4.12 Water on Demand ... 50
5 Manage Menu .. 51
 5.1 Bird Inventory ... 51
 5.2 Feed Inventory .. 51
 5.2.1 Feed Inventory Help | Set Definitions ... 52
 5.3 Time & Date .. 53
 5.4 Growth Day & Flock .. 53
5.5 Alarm Setting .. 53
 5.5.1 Alarm Setting Help | Set Definitions .. 55
5.6 Alarm Reset .. 56
5.7 Fail Safe Setting .. 57
5.8 Password .. 57
5.9 Relay Current ... 57
6 Scale Menu .. 59
 6.1 Scale Layout .. 59
 6.2 General Settings ... 59
 6.2.1 General Settings Help | Set Definitions ... 60
 6.3 Bird Scale Setting ... 60
 6.4 Feed Bin Setting ... 61
 6.5 Bird Curve .. 62
 6.6 History ... 62
 6.7 Feed Conversion .. 63
 6.8 Test .. 63
 6.9 Calibration .. 64
 6.9.1 Scale Calibration ... 64
 6.9.2 Feed Bin Calibration ... 65
7 History Menu ... 66
 7.1 Temperature .. 66
 7.2 Humidity .. 66
 7.3 CO2 .. 66
 7.4 Water .. 67
 7.5 Feed .. 67
 7.6 Mortality .. 67
 7.7 Heaters .. 67
 7.8 Radiant Heaters .. 67
 7.9 Alarms ... 67
 7.10 Table of Events .. 68
 7.11 History View ... 68
1 FRONT MATTER

This section includes information on the manual and general information.

1.1 Introduction

Rotem manuals provide easy-to-use information regarding the installation, operation, long/short term planning and parts listing (this manual may not deal with all of the above subjects). The table of contents is an outline of the relevant information in this manual.

Read this manual before operating your Rotem product. Using this equipment for any other purpose or in a way not within the operating recommendations specified in this manual will void the warranty and may cause personal injury.

If you have any questions or comments regarding your product, please contact your local Rotem dealer.

1.2 Conventions

NOTE: Notes provide important details regarding specific procedures.

CAUTION Cautions alert you to potential damage to the controller if the procedures are not followed carefully.

WARNING! Warnings alert you to potentially hazardous situations that, if not avoided, could result in death or personal injury.

1.3 Contact Information

Rotem Control and Management

Email: support@rotem.com
URL: www.rotem.com

1.4 Document Information

Revision History

<table>
<thead>
<tr>
<th>Revision Level / Date</th>
<th>Para. Affected</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 / January 2011</td>
<td>Entire Document</td>
<td>Ver 3.02 Rotem template</td>
</tr>
<tr>
<td>2.1/ June 2011</td>
<td>2.3/6.9/9.13/7.12</td>
<td>3.03 Release; added light sensor support, light table for feed and no feed days, feed cycles, light parameters (correlating with feed timing), support for 4 water lines and meters, revised attic control parameter, changed setting for 2nd pressure set point, changed Scale menu, changed Bird Scale settings</td>
</tr>
<tr>
<td>2.2 / Aug 2011</td>
<td>2.3/6.4/7.9.5</td>
<td>4.03 release, corrected Main Screen</td>
</tr>
<tr>
<td>2.3 / Aug 2011</td>
<td>Page 78</td>
<td>Feeder Off definition changed /Light screen: changed numbers to the right/ Feed Bin Settings: reworded definitions</td>
</tr>
<tr>
<td>2.4 / December 2011</td>
<td>Section 3.4.4</td>
<td>Corrected note on attic sensor</td>
</tr>
<tr>
<td>2.5 / January 2012</td>
<td>6.2.1</td>
<td>Added Ventilation by Weight</td>
</tr>
<tr>
<td>2.6 / Feb 2012</td>
<td>Updated to 4.05</td>
<td></td>
</tr>
<tr>
<td>2.7 / June 2012</td>
<td>4.3/1.8.2.1</td>
<td>Updated help section</td>
</tr>
<tr>
<td>2.8 / July 2012</td>
<td>XL Picture/corrected parameter/corrected parameter</td>
<td></td>
</tr>
<tr>
<td>2.9 / Aug 2012</td>
<td>4.12/3.27.2</td>
<td>WOD/2 humidity sensors</td>
</tr>
</tbody>
</table>
2 INTRODUCTION TO PRECISION MODE

This document describes the Platinum Plus, Platinum Junior, and Platinum XL Precision Mode operation. For greater simplicity and ease of use, you can opt to use the Standard Mode; documentation is provided in the Standard Mode manual.

Computerized Electronic Controllers such as the Platinum advance the producer's ability to grow high quality poultry by accurately controlling the environment. Instead of struggling with individual thermostats for heat zones and ventilation, Platinum brings them all together into one convenient place with great accuracy. In Precision Mode, the Platinum optimizes and precisely applies your equipment and energy sources to most benefit from the accuracy of your computer and sensors.

Where Simplicity and Ease of Use are important benefits of Standard Mode, Features and Precise Application characterize Precision Mode. The Platinum coordinates your ventilation equipment in precise levels of ventilation to provide the optimal fresh air balanced with heating costs. The light and feed clocks provide additional channels for greater capability. Besides advanced Cooling Pad methods, you benefit from superior stir fan programs to recover ceiling heat and other features. Precision Mode's additional features enable you to improve your profitability significantly.

Platinum provides a variety of management and history utilities. You can choose from simple overviews, or fully detailed by the minute records of minimum, maximum and average temperatures for each individual sensor. The unique Table of Events records the moment of every significant action taken by the Platinum and, optionally, its operator.

Communication software is available to customers who wish to access their Platinum controllers locally or remotely at ROTEM's website, www.rotem.com. ROTEM provides technical support on the website, as well as through the large dealer and agent network.

- Precision Ventilation - A Quick Look, page 9
- Front Panel, page 11
- Keypad, page 11
- Relay Switches, page 12
- Hot Screens, page 12
- Standard Display, page 14
- Main Menu Icons, page 15
- Version History, page 16

2.1 Precision Ventilation - A Quick Look

Rotem's Precision Ventilation works by giving the Platinum many finely spaced levels of ventilation from which to choose. This enables it to find the right ventilation for the conditions present. A typical change in ventilation from one level to the next in Precision Mode is 20%, compared to as much 1,000% in Standard Mode (for example, when the Minimum Ventilation Timer setting is 30 seconds on, 270 seconds off).

Consider the following simplified Ventilation Levels example:

<table>
<thead>
<tr>
<th>Ventilation Level</th>
<th>Diff ºF</th>
<th>On Time Seconds</th>
<th>Off Time Seconds</th>
<th>Cycle Fans</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>0</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>Lower Levels …</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>60</td>
<td>240</td>
<td>1 and 2</td>
<td>1 Minute out of 5 on Timer Fans</td>
</tr>
<tr>
<td>Ventilation Level</td>
<td>Diff °F</td>
<td>On Time Seconds</td>
<td>Off Time Seconds</td>
<td>Cycle Fans</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>75</td>
<td>225</td>
<td>1 and 2</td>
<td>Current Level, 25% more than Level 5</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>90</td>
<td>210</td>
<td>1 and 2</td>
<td>1½ Minutes out of 5, 20% more than Level 6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>... Higher Levels</td>
</tr>
</tbody>
</table>

The Platinum is currently at Level 6, which in this example means two cycle or timer fans run 1¼ minutes out of five. If required, the Platinum moves to Level 5 or Level 7 to maintain the Target Temperature.

In this example, the Differential Temperature for each level is **Zero**. This means that all these levels occur at the **same temperature**! In Precision Mode, the Platinum finds that level of ventilation that precisely maintains the target temperature.

Besides maintaining more accurate and precise temperatures, Precision Mode has other benefits. A few examples:

- **Increased Reliability**: Can ‘rotate’ minimum ventilation timer fans so that all of your fans get a turn.
- **Save Fuel while Ventilating More Efficiently**: Can automatically decrease ventilation as fuel use increases, and increase ventilation whenever outside temperatures allow economical use of free air. See the ‘Soft Min Vent’ section.
- **Recapture Free Heat**: On-board features to reclaim lost heat back to the birds where it benefits them. See the ‘Stir Fans’ sections.
2.2 Front Panel

Figure 1 shows the Platinum Plus front panel and its elements. This particular model has 25 relays.

Figure 1: Platinum Plus Front Panel

The following sections detail the front panel elements.

NOTE: The Platinum XL has a larger screen, but the functionality of the Platinum Plus, Junior and XL are the same.

2.3 Keypad

Enter main menu, also acts as “ESC” or “Back” keys

Access help screens and graphs

Erase typing mistakes

Enter menus, values, open windows

Scroll up, down, left and right

Enter values, select options and make selections

Toggle between positive and negative values and mark check boxes.
2.4 Relay Switches

Figure 2: Standard Relay Switches
Figure 2 illustrates a row of standard relay switches. Set each relay to:

- **On**: Always on
- **Off**: Always off
- **Auto**: The relay operates according to its set parameters.

Figure 3: Emergency Relay Switches

Figure 4: Winch Switches

2.5 Hot Screens

Many of the keys serve as shortcuts. Here are the main ones:

- **Help**: Software version
- **1**: Return to standard main screen
- **2**: Temperature, Humidity Status, and Wind Chill Temperature
- **3**: Curve Status
- **4**: Curtain Position
- **5**: Bird Scale and Feed Bin Status
- **6**: Light Status
- **7**: Analog Output Status
- **9**: Lock password protected controller
Scan through Hot Screens for five seconds each

Air Status (refer to Weight Hot Screen, page 27 for details on this screen)

NOTE: Increase/Decrease Offset from Temperature Setting from the Standard display only (hold both keys) – defined in the *TEMPERATURE CURVE HELP | SET*

NOTE: In Versions 3.06/4.06, if two humidity sensors are installed, Hot Screen 2 displays their average.

Increase/ decrease offset from temperature setting from the standard display only (hold both keys) – defined in the *TEMPERATURE CURVE HELP | SET*
2.6 Standard Display

The main screen consists of the following parts.

1. Displays individual sensor readings. Temperature sensors marked with dark squares form the current average temperature.
 - **Filled square**: Indicates the sensor participates in the average calculation.
 - **Empty square**: Indicates the sensor does not participate in the average calculation.

2. Reports the current average temperature. This example is in Celsius, but yours may be in Fahrenheit.

3. Displays the output relay list. The filled black boxes indicate active outputs. Controller also informs the position of inlets and curtains, as well as the number of operating heaters or fans.

4. Status Window provides important general information such as the time and ventilation mode.

NOTE: Go to Table 3: Sensor Readings page 91, to view all the possible sensors.

NOTE: Go to Table 4: Output List (Active), page 91 to view all the available readings (ACTIVE).

NOTE: The ACTIVE screen shows rectangular markers by the outputs. Filled rectangles indicate operating outputs; empty rectangles indicate outputs that are off.
EXAMPLE

NOTE: Go to Table 3: Sensor Readings, page 91 to view all the available readings.

5. Displays important messages/alarms. The title bar displays the number of important messages, and if there are several messages, they each appear in turn.

2.7 Main Menu Icons

1. To enter the Main Menu screen, press Menu.
2. To select an option, press Enter.
2.8 Version History

The following section details the various versions of the Platinum Controllers mentioned in the manual.

Version 3.02 supports:
- CO2 Treatment (refer to CO2 Treatment, page 22; CO2, page 66; Analog Sensors, page 87)

Version 3.03 supports:
- Light Sensor Support (refer to Light Help | Set Definitions, page 44; Light Sensor Calibration, page 76;
- Setting the light table based on feed/no feed days (refer to Light, page 43)
- Four water meters (refer to Digital Sensors, page 87)

Version 4.03 supports:
- Based on Version 3.03
- Current Sense Relays (refer to Relay Current, page 57; Power Consumption, page 68;
 Current Sense Relay Calibration

Version 4.04 supports:
- Ventilation by Weight (refer to By Weight, page 25)

Version 4.05 supports:
- Four variable speed stir fans (refer to Stir Fan Levels, page 36; Auger Empty Alarm, page 54
- Feed calibration using Current Sense (refer to Feed Calibration, page 76; Feed, page 67)
- Four feed bins (refer to Feed Inventory, 51; Scale Layout, page 59; Feed, page 67; Feed Bin Calibration, page 65)
- Four auger and feed lines (refer to Output Function List, page 84)
- Four variable speed stir fan outputs (refer to Stir Fan Levels, page 36; Analog Output, page 88)
- 3 x Stir fan program controlled by sensor differentials or independent (refer to Stir Fan Program Help | Set Definitions Version 4.05, page 37)
- Wind chill hotkey

Version 3.06/4.06 supports:
- Water on Demand (refer to Water on Demand, page 50)
- Variable Heat Control (refer to Variable Heater Help | Set Definitions, page 20)
- Two humidity sensors

NOTE: Version 3.06 refers to Platinum Controllers equipped with an XA CPU. Version 4.06 refers to Platinum Controllers equipped with an ARM CPU.
3 CONTROL MENU

The following sections detail the following functions:

- Temperature Curve, page 17
- Humidity Treatment, page 21
- CO2 Treatment, page 22
- Min/Max Level, page 23
- Static Pressure, page 28
- Control Mode, page 30
- System Parameters, page 30

3.1 Temperature Curve

From the Main Menu screen, select ‘Control’ → 1. TEMPERATURE CURVE.

1. Define the required target temperature curve.
 - **Day**: Sets growth day. You can program negative growth days up to -2 for pre-warming. To enter a negative growth day, type the day number followed by the +/- key.
 - **Target**: Set the desired temperature.
 - **Heat**: Set the temperature to stop heat.
 - **Tunnel**: Set the temperature for Tunnel to begin.
 - **Alarm Low & High**: Set average temperature alarm limits. See Manage | Alarm Settings for zone alarm settings.

2. If required set the:
 - Temperature Curve Help | Set Definitions, page 17
 - Radiant Heaters Help | Set Definitions, page 19
 - Variable Heater Help | Set Definitions, page 20

3.1.1 Temperature Curve Help | Set Definitions
• **Temperature Curve Offset**: Adjusts all temperature curves by this amount. You can use this to temporarily adjust all temperatures up or down for special circumstances. The curve appears in the Status Window, and you can use the **ENTER and Up** or **ENTER and Down** hot key combinations to change the offset.

• **Set Temp. Change Reminder (Diff)**: Sets the change in set temperature that triggers a reminder for you to set backup thermostats. Often producers forget to set backup thermostats as their birds grow from baby chicks to market age, so the Platinum reminds you. When you press Enter to acknowledge the reminder, the Platinum logs it in the Table of Events.

• **Target Temp. Band**: The size of the target temperature zone. This "Happy Zone" is between Target Temperature and (Target Temperature + Band).

• **Heater Temp. Band**: Heaters turn on at 'Band' degrees below Heat, and turn off at the Heat Temperature.

NOTE: Heaters operate at minimum level only; however, Radiant Heaters can operate at any temperature or level below Tunnel.

• **Cool Down Factor (%)**: Minimum percentage correction towards target during each increase ventilation level delay. If average temperature does not improve by this amount, the Platinum increases ventilation by one level.

• **Cool Down Fast Response (Deg.)**: Set a limit to the maximum degrees per minute of cooling. If Average Temperature drops more than this in one minute, the Platinum decreases ventilation one level to avoid overshooting.

NOTE: Avoid making this parameter too small or the normal temperature variation caused by timer fans reduces the ventilation level.

• **Min Vent Below Heat Temp By**: Tells controller to go directly to Min Level in some cases. Select from the following choices:
 - None: Operate by the normal level decrease time delay rule.
 - Zone: Go directly to minimum level if any active temperature sensor reaches heat temperature.
 - Avg.: Go directly to minimum level if the average temperature reaches heat temperature.

• **Non Brood Area Diff. From Heat**: Set differential temperature for non-brood heaters. You normally use this to set temperatures in unoccupied areas.

NOTE: When set at -99°F the heaters are effectively disabled, since it will probably never go to 99°F below the heater temperature. Putting this parameter at 0°F sets the non-brood areas to the heater temperature.
3.1.2 Radiant Heaters Help | Set Definitions

To configure the radiant heaters:

1. In Installation > Relay Layout define at least one relay as a radiant heater (Relay Layout, page 84).

2. Configure the following parameters:

 - **Radiant Low – Differential from Heat Set**: Set degree of difference from Heat for LOW Radiant Heaters to begin working. This differential can be positive or negative. (default: 2.0)

 - **Radiant High – Differential (Below Low Set)**: Set number of degrees below Radiant Low Heaters for HIGH Radiant Heaters to begin working (default: 1.0). To ensure proper heater ignition, Radiant High Heaters remain on for the Radiant Ignition Time along with the Radiant Low Heaters.

 - **Radiant Ignition Time (sec)**: Set number of seconds to power radiant ignition (default: 30).

NOTE: The Heater Temperature Band applies to radiant heaters as well. For example, if the Heat Temperature is 80º F and the Heater Temperature Band is 1º F, then heaters turn on at 79º F and off at 80º F. If the Radiant Low Differential is at 2.0º F, than radiant heaters turn off at 82º F, and on 1º F below that at 81º F. However, a Radiant High Heater turns on regardless of its temperature setting for the Radiant Ignition Time whenever the corresponding Radiant Low Heater turns on. This feature ensures proper flame ignition.

![Figure 5: Radiant Heater Differentials](image-url)
The Platinum Controller enables configuring up to eight variable heaters. The output of the heaters changes as the temperature increases or decreases.

To configure the variable heaters:

1. In *Installation > Analog Output* configure:
 a. up to eight analog outputs as variable heaters
 b. the minimum and maximum voltage output for each heater

2. In *Control > Temperature Curve > Help*, scroll down to Variable Heater. Configure the
 - **Low Diff Below Heat Tmp:** Temperature at which the variable heater begins to function
 - **High Diff Below Heat Tmp:** Temperature at which the heater begins to operate at maximum output

Figure 6 illustrates how a variable heater functions. The Target Temperature is 89°F. The Low Diff Below Heat Tmp is 0.5°F, the High Diff Below Heat Tmp is 4.5°F.
3.2 Humidity Treatment

Humidity treatment forces an increase in ventilation level when the humidity is too high. It holds the increase for ‘Duration Seconds’, and checks back after ‘Interval Minutes’ for another increase. After the duration, the ventilation level comes back down automatically.

- **Day:** Growth day. Can set multiple programs for same day (Maximum number of programs: 20)
- **Humidity:** Humidity at which to begin treatment
- **Delay Minute:** Amount of time the controller pauses before ventilating
- **Duration Sec.:** Number of seconds the controller maintains the increased level of ventilation

<table>
<thead>
<tr>
<th>Day</th>
<th>Humidity</th>
<th>Delay Minute</th>
<th>Duration Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>10</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>7</td>
<td>150</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>5</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.2.1 Humidity Treatment Help | Set Definitions

- Humidity Band (%): Hysteresis band for Humidity Treatment.
- Humidity Treatment below Heat: Select YES or NO for allowing Humidity Treatment when heaters are operating (set in CONTROL | Temperature Curve).

3.3 CO2 Treatment

NOTE: This feature is only available in Version 3.02 and higher.

CO2 treatment forces an increase in ventilation level when the CO2 level is too high. It holds the increase for ‘Delay Seconds’, and checks back after ‘Interval Minutes’ for another increase. After the duration, the ventilation level may come back down automatically.

If during treatment, the CO2 level drops below the Stop Value parameter, the ventilation level automatically returns to that level used before CO2 treatment was initiated.

- **Day:** Growth day. Can set multiple programs for same day (Max. programs 20)
- **Start Value:** CO2 value at which to begin treatment
- **Stop Value:** CO2 value at which to end treatment
- **Delay (Sec):** Number of seconds the controller pauses before ventilating
- **Duration (Sec):** Number of seconds the controller maintains the increased level of ventilation
3.3.1 CO2 Treatment Help | Set Definitions

- **CO2 Treatment below Heat**: Select YES or NO to enable CO2 treatment when heaters are operating (set in **CONTROL | Temperature Curve**).

3.4 Min/Max Level

IMPORTANT: Before setting Min/Max level, go through and set up the Device Settings, especially the ventilation levels. Once you have entered the ventilation levels, use the Min/Max to select the range of levels to apply to your situation. Typically, you increase the minimum ventilation level as litter conditions deteriorate and the birds require greater amounts of fresh air. You can also restrict the maximum level to prevent excess airflow on young birds.

The following are methods to set the Min/Max levels:

- By Day and By Days Curve
- By Time
- Day Soft Min.
- By Weight

Go to Control Mode, page 30 to select the method used.
3.4.1 By Day and By Days Curve

- **Day**: Set growth day
- **Min**: Set minimum ventilation level for controller
- **Max**: Set maximum ventilation level for controller

NOTE: **BY DAYS CURVE** generates an incremental increase/decrease between the defined days whereas **BY DAYS** simply operates according to the min/max values of the day until the following day defined is reached.

Day Min Max

<table>
<thead>
<tr>
<th>Min/MAX LEVEL</th>
<th>Day</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.4.2 By Time

- **From**: Set time of day (hh:mm) in 24 hour format
- **Min**: Set minimum ventilation level for controller
- **Max**: Set maximum ventilation level for controller

From Min Max

<table>
<thead>
<tr>
<th>MIN/MAX LEVEL</th>
<th>From</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:00</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

3.4.3 Day Soft Min.

- **Day**: Set growth day
- **Min Soft**: Set minimum ventilation level for when temperature drops below heat temperature
- **Min**: Set minimum ventilation level for when temperature is above heat temperature
- **Max**: Set maximum ventilation level for controller

Day Soft Min

<table>
<thead>
<tr>
<th>MIN/MAX LEVEL</th>
<th>Day</th>
<th>Min Soft</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>
3.4.3.1 Soft Min/Max Level Help | Set Definitions

- **Differential Below Heat for Soft Min**: Set the degree of difference from heat temperature (set in `CONTROL | Temperature Curve`) to switch minimum level from Min. to Soft Min.
- **Temp Choice for Soft Min**: Select inside/outside/attic temperature to control Minimum Level changes. The minimum level adjusts towards the Soft Min as this temperature falls. Above the heat temperature, the minimum level is at the Min setting.

As temperature rises, **INSIDE** and **ATTIC** stay at lowest ventilation level reached until average temperature gets to the heat setting, and then changes instantly. With the **OUTSIDE** selection, the minimum ventilation level increases gradually as temperature rises to the heat setting. This means inside and attic soft min vent choices to latch to the lowest level reached as long as the temperature remains below the heat setting.

3.4.4 By Weight

The By Weight option enables controlling the minimum air flow depending on the number of birds, their weight and the current outside temperature. When using the Weight option, Platinum takes several parameters and calculates the air speed, level of ventilation and cycle time needed to supply the required volume. As opposed to the other ventilation methods, the Weight option is dynamic, with the ventilation changing according to the current parameters (quantity of air required, weight of birds and number of birds, outside air temperature). In addition, Ventilation By Weight sends out an alarm if the current ventilation is below the minimum required level.

NOTE: This option is available in Version 4.04 and higher.

To set up the Weight Option:
1. In the `Install > Setup` menu (page 83) enable Minimum Vent (Power).
2. In the `Install > Fan Air Capacity` menu, define the air capacity / hour (page 89).
3. In the `Scale > General Setting` menu, select the curve.
4. In the `Scale > Bird Curve` menu, define the growth days and weights as required.
5. In the `Control > Control Mode > Min. Max Level Control` menu, select **Weight**.
6. In the `Control > Min/Max Level` menu, set the parameters as required.
Platinum Plus and Platinum Junior | 3.00 and higher 26

7. In the Management > Bird Inventory menu, type the number of birds.
8. In the Help menu, define the parameters as required.
Ventilation by Weight is configured.

3.4.4.1 Min/Max Level By Weight Help | Set Definitions

- **Warm Temp. – Diff Below Heat**: Differential below the heat temperature (refer to Temperature Curve, page 17) that defines outside temperature as Warm in the Soft Min/Max table. For example, if the Heat Temperature is 78° F, Warm Temp. – Diff Below Heat is 2.0, than the outside temperature is defined as warm at 76° F.
- **Cold Temperature**: Outside temperature (or below) at which Air per Kg/Lb (Cold) capacity is reached.

When the outside temperature is between the Warm and Cold Temperature, the flow rate is calculated at a proportional rate.

- **Air Change**: As the temperature rises from the Cold Temperature parameter to the Heat Temperature (or drops from the Heat Temperature to the Cold Temperature parameter), the minimal air volume rises/falls proportionally. Air Change defines the minimal change in air temperature that must take place to cause a change in the air supply.

- **Fan Cycle Time**: The total amount of time that the fans operate while operating under Minimum Ventilation. During this time, the fans supply the required volume of air at the minimum ventilation level required. Platinum adjusts the minimum ON time and OFF time as needed. If the fans cannot supply the required volume at a particular level of ventilation, Platinum automatically adjusts the minimum ventilation level.
 - Minimum ON Time in Vent Cycle: The minimum amount of time that the fans operate during a cycle. Platinum adjusts the actual fan time as needed.
 - Minimum OFF Time in Vent Cycle: The minimum amount of time that the fans do not operate during a cycle. Platinum adjusts the actual fan time as needed.

As the temperature rises, the actual Minimum OFF Time decreases until it reaches the minimum time. Only than does the Minimum On Time begin to rise.

NOTE: If the temperature goes about the Band Temperature, Power Ventilation begins and times are adjusted accordingly.

3.4.4.2 Weight Hot Screen

Selecting the Ventilation by Weight option enables an additional Hot Screen, the Air Status Screen. This screen displays the critical parameters involved in the Ventilation by Weight option.

![Air Status Screen](image)

- **Inside Temperature**: Current temperature inside the house
- **Outside Temperature**: Current temperature outside the house
- **Humidity**: Current relative humidity inside the house (requires a humidity sensor)
- **Weight KG**: Current average weight of the Bird Curve (page 62)
- **Level**: Displays the current, minimum and maximum level of ventilation.

NOTE: If the current level is below the minimum required level, Platinum displays an alarm “Below Min Air”.

- **Cycle On/Off**: Displays the current, minimum and maximum fan on and off times.
- **Total Air M3/h**: Displays the current, minimum and maximum quantity of ventilation, per hour.
- **Air/WGT**: Displays the current amount of ventilation, per kilo/pound of bird weight.
3.5 Static Pressure

Set target parameters for Static Pressure at High and Low Outside Temperatures, as well as alarms for high and low static pressure.

Minimum Ventilation

- **Static Pressure at Low Temp:** Set desired static pressure for low outside temperature conditions. Be sure that there is proper airflow at this setting.

- **Static Pressure at High Temp:** Set desired static pressure for high temperature conditions. Normally this pressure is lower to obtain a larger air inlet opening.

NOTE: Controller interpolates between the LOW and HIGH Temp. If Static Pressure exists, then it is controlled by the outside temperature sensor, otherwise the average temperature.

- Low Static Pressure Alarm: Set alarm for low static pressure. If you disable it by setting zero, the Platinum warns you and enters a record in the Table of Events.

- High Static Pressure Alarm: Set alarm for high static pressure.

- Static Pressure Band: Set desired band for the target pressure.

Tunnel Ventilation

- **Target Static Pressure:** Set required Static Pressure for Tunnel Ventilation Mode.

- **Low Static Pressure Alarm:** Set alarm for low static pressure.

- **High Static Pressure Alarm:** Set alarm for high static pressure.

- **Static Pressure Band:** Set required band for pressure in tunnel ventilation mode.

Attic

- **Target Static Pressure:** Set required Static Pressure when in attic mode.

- **Static Pressure Band:** Set required band for attic ventilation mode.

3.5.1 Disabling the Static Pressure Sensor

To disable the static pressure sensor:

1. Go to *Installation > Setup*.
2. Set the Static Pressure Unit to *None*.

The main screen stops:

- displaying the pressure
- displaying High Pressure and Pressure Sensor Failure alarms

NOTE: If either of these alarms were active before disabling the sensor, the main screen continues to display the alarms. Reset the alarms one time to cease the display.
3.5.2 Static Pressure Help | Set Definitions

- **Wind Gust Delay Time (sec):** Set length of time in seconds before starting Static Pressure control after an unexpected change in air pressure.
- **Static Pressure During Tunnel:** Select **YES** or **NO** for using Static Pressure control when in Tunnel mode.
- **Transitional Tunnel:** Select **YES** or **NO** for using tunnel curtains when static pressure is high and vents are already at 100%.
- **Minimum Ventilation Using (vent/curtain):** Select **VENT** or **CURTAIN** for controlling static pressure when in minimum ventilation.
- **LOW Incoming Air (diff to Trg):** Define low temperature for static pressure control.
- **HIGH Incoming Air (diff to Trigger):** Define high temperature for static pressure control.
- **Emergency Static Pressure Delay (sec):** Set length of time in seconds before initiating an emergency opening when pressure exceeds high alarm setting.
- **Curtain Position in Emergency Static Pressure (%):** Set the desired curtain position (in percentage) when an emergency pressure event occurs.
- **Low Static Pressure Alarm Min. Level (MinV):** Below this level, the controller ignores low static pressure alarms.
- **Low Static Pressure Alarm Min. Level (Tun.):** Below this level, the controller ignores low static pressure alarms while in tunnel mode.
- **Time to Produce Static Pressure (sec):** Enter the length of time to reach target pressure when minimum ventilation fan cycle is on.
- **Attic Advance Opening Time (sec):** Define the amount of time for the attic inlets to open before minimum vent cycling fans turn on.
3.6 Control Mode

Select house-operating modes, turn temperature curves on or off and select which type of min/max CO2 level method to use.

- **House Mode**: Select whether the house is in one of the brood set ups, or in full house.
- **Empty House Mode**: Select YES in order to disable alarms.
- **Temperature Curve**: If you select OFF, temperature settings become fixed values until midnight on the next setting in CONTROL | Temperature Curve (page 17).
- **Min. Max. Level Control**: Set ventilation control method (By Days, By Days Curve, By Time, By Soft Min, and Weight). Refer to Min/Max Level, page 23 for more details.

3.7 System Parameters

System Parameters consolidates all of the HELP | SET menus into one scroll screen.
4 DEVICE MENU

The Platinum can have many closely spaced levels of ventilation enabling it to find the optimum average airflow for the poultry facility. Many of the levels are at exactly the same temperature setting, so there may be a question as to how the Platinum chooses the correct level.

The menus in this section apply levels to ventilation, variable speed fans, curtains and so on. The levels in the various menus are consistent with each other so that a level in one menu corresponds with that level in any other menu.

The rules that apply here are:

- **Rule 1**: If the temperature is at target (in the Happy Zone) stay at the current level.
- **Rule 2**: If the temperature moves outside the Happy Zone; have some patience.
- **Rule 3**: After some patience increase or decrease level appropriately.

You can find the ‘patience’ factors under HELP | SET in this menu. They are the increase level delay and decrease level delay parameters. The factory default values are 180 seconds for an increase and 60 seconds for a decrease.

The factory default values bias the Platinum slightly toward warmer temperatures, as would be appropriate for young birds. The level increase delay is longer than the level decrease delay. You may wish to reverse these values by the time you have market age broilers, since they are more sensitive to heat stress than to cold.

Although many of the levels have 0.0 differential temperatures, certain levels should have differentials to account for wind chill on the birds. The first tunnel level accounts for wind chill by switching to the tunnel temperature instead of target temperature. Higher tunnel levels require an additional wind chill because of the increased airflow.

In addition, the last few levels before entering tunnel can form a transitional region. You may want to build differentials from target temperature just before the first tunnel level.

The controller obeys both the time delay rules and the differential temperature rules when changing levels. Tunnel exit has several additional rules, such as outside temperature restriction and the tunnel exit delay described under HELP | SET. In addition, there are Cool Down and change to Min Vent on reaching the Heat temperature features described in Control | Temperature Curve | HELP | Set parameters.

The following sections detail the menu functions.

- Levels of Ventilation, page 32
- Speed Fan Levels, page 34
- Vent & Curtain Levels, page 34
- Stir Fan Levels, page 36
- Stir Fan Program, page 37
- Cool Pad, page 40
- Foggers, page 42
- Light, page 43
- Water & Feed, page 46
- Extra Systems, page 47
- Emergency Setting, page 48
- Water on Demand, page 50
4.1 Levels of Ventilation

The Precision Ventilation table provides up to 30 ventilation levels. To program this table, start with the minimum ventilation used in the first level and increase ventilation gradually. A reasonable rule of thumb is to increase the airflow about 25% at each level. Increases in airflow up to 50% work satisfactorily with factory default settings.

1. **Ventilation Level**: Read-only

2. **Differential Temperature**: Triggers next level according to difference from target temperature (time delays remain in effect).
 - a) The first several levels normally have differential temperature set to 0.
 - b) If the ventilation level is below tunnel, the differential temperature is relative to Target temperature given in **CONTROL | Temperature Curve**.
 - c) If the ventilation level is a tunnel level, the differential temperature is relative to the Tunnel temperature given in **CONTROL | Temperature Curve**.

3. **Cycle timer ON**: Set ON time for fans for that ventilation level.

4. **Cycle timer OFF**: Set OFF time for fans of that ventilation level. This parameter disappears if cycle time is set in the **HELP | SET Parameters** to something other than 0 and the controller calculates the “Cycle timer OFF” automatically.

5. **Exhaust**: Control exhaust fans according to Continuous, Cycle, and Rotate.

6. **Tunnel**: Control tunnel fans according to Continuous, Cycle, and Rotate.

 - **Continuous**: Works constantly without a break
 - **Cycle**: Operates according to ON/OFF timer
 - **Rotate**: Operates according to ON/OFF timer; in each cycle a different fan operates
4.1.1 Levels of Ventilation Help | Set Definitions

- **Maximum Levels of Ventilation**: Set the maximum number of levels.
- **First Tunnel Level**: Entry point to tunnel mode.
- **Max Fans, Switch to Tunnel**: Maximum number of fans allowed to operate when entering tunnel mode.
- **Tunnel Exit – Differential Below Tunnel**: Set degree of difference below Tunnel temperature (set in CONTROL | Temperature Curve) to Exit Tunnel mode.
- **Tunnel Exit – Outside Differential from Tunnel**: The outside temperature must read below this (Tunnel + Differential) to allow exiting from tunnel mode.
- **Increase Level Delay Time (sec)**: Set length of time in seconds before transitioning to next level.
- **Decrease Level Delay Time (sec)**: Set length of time in seconds before transitioning to lower level.
- **Fan Cycle Time (sec, 0-Manual)**: If set to 0, set on and off times for each level manually. If you are using a fixed cycle time, such as 300 seconds, enter it here and enter only the **On** time at each level. Default: 0
- **Tunnel Exit Delay (minutes)**: Set length of time in minutes before exiting Tunnel mode. This time begins once all other parameters are satisfied.
4.2 Speed Fan Levels

In the Variable Speed Fan Level table you can set the speed in percentages for up to four groups of fans by level. Configure them in Install | Analog Output.

This function requires an Analog Output card in the controller. This card sends a low voltage control signal to a Variable Speed controller to run the variable speed fan. Several kinds of speed controllers are available, such as TRIAC Control, and Variable Frequency 3 Phase drives.

4.3 Vent & Curtain Levels

Set the curtain levels to correspond with the ventilation levels.

1. Ventilation Level: Read-only.

2. Minimum Position (%) Tunnel Ventilation: Set position for the tunnel curtain by level. If you have Static Pressure in Tunnel turned on (Control | Static Pressure | Help | Set), this becomes the minimum position for the tunnel inlet.

3. Minimum Position (%) Side Vents: This is the minimum opening for the Side Vents level-by-level while in Min Vent mode and while either exhaust or tunnel fans are operating. The Platinum ignores this parameter in Tunnel Ventilation.
4.3.1 Vent & Curtain Levels Help | Set Definitions

Curtains

- **Num. of Steps for Curtain to Calibrate**: Set calibration point for curtain after desired amount of curtain opening/closing (steps). During calibration, if the curtain is open more than 50% it opens to 100%, calibrates, and returns to the previous position. If the curtain is open less than 50% it closes to 0%, calibrates, and returns to the previous position. Default: 99.

- **Stop Fans, Curtain Move (total %)**: Commands controller to stop fans during curtain movements when total of all curtains is less than the total percent set in this parameter. For example, 3 curtains at 40% each total 120% for this parameter. Default: 30%

- **1st Day for 2nd Vent to Operate**: Set the day the second vent begins operating. Default: 1.

- **1st Level for 2nd Vent to Operate**: Set the level the second vent begins operating. Default: 1

NOTE: You can set negative days.

- **Num. Steps for Vent to Calibrate**: Set calibration point for vent after desired amount of opening/closing (steps). During calibration, vent opens to 100%. Default: 99.

- **Calibrate at Power Up**: This parameter instructs the Platinum to perform automatic calibration of air inlets when recovering from a power outage. In many installations the backup system, such as Rotem’s RBU-27, may have opened the air sources. When the Platinum takes over control again, the air inlets are incorrectly positioned. The calibration at power up feature synchronizes the actual position and the controller.

Attic

- **Minimum Attic Temp. To Operate**: Set the minimum temperature to activate the Attic operation.

- **Operate Until Day**: Set the last day for attic operation.

- **Operate From/To Time**: Set the time frame for attic operation.

NOTE: If one of the above options is relevant, the Attic is enabled.

- **Max Temperature to Disable Attic**: Set the maximum attic temperature to stop using attic ventilation. This setting can prevent the heating effect in the growing space being too high resulting in overheating.
In the Stir Fan Level table set the speed in percentage that you want the variable speed fan to work at (by levels). For each level, program the stir fans’ cycle. Configure the actual speed in Install | Analog Output.

1. **Ventilation Level**: Read only.
2. **Speed Fan-1, 2, 3, 4**: Set variable speed fan operation in percentages.
3. **Stir Fan**: Control stir fans according to Continuous, Cycle On, Cycle Off (ventilation cycles are the same as previously set in Levels of Ventilation).

- **Continuous**: Constantly works without a break.
- **Cycle**: Operates according to ON/OFF timer.
- **Rotate**: Operates according to ON/OFF timer; in each cycle a different fan operates

NOTE: The Stir Fans operate according to the levels you program in this menu, and according to the programs you select in the Stir Fan Program. The fan turns on if any program or level requests ON; all programs and levels must be OFF for the Stir Fan to be off.

NOTE: Version 4.05 and higher supports four variable speed fans. Previous versions support two fans.
4.5 Stir Fan Program

This section contains five different programs that you can assign to each stir fan. Check the programs applying to each fan by using the ‘+/-’ key (further explained in Stir Fan Program Help | Set).

NOTE: If the same variable stir fan is selected for different programs, the program having the highest fan speed operates.

- **A (heaters):** This program corrects temperature variations lengthwise in the building. Insert diff and sensor numbers.
- **B (for min vent):** This program helps mixing minimum ventilation air for buildings having stir fans to mix the air coming in with warm inside air.
- **C, D & E (sensors diff temperature):** These options create three stir fan groups which operate according to sensor differentials.

4.5.1 Stir Fan Program Help | Set Definitions Version 4.05

Diff below Target to Operate: Set the degree of difference below the target temperature for stir fans to operate.

Cycle On time (sec): Define the length of time in seconds you would like the stir fan to operate during the cycle.
- **Cycle Off time (sec):** Define the length of time in seconds you would like the stir fan to be off during the cycle.
- **From/To Level:** Limit the program to operate between the levels defined.
- **From/To Time:** Define the time frame for the program to operate (24-hour format).
- **Stop During Fan Operation:** Select YES to run the heaters when the fans are operating.

Program B (for Min Vent)

- **Operate after End of Cycle:** Set when stir fan begins operating. It can be at the end of the ON cycle or the OFF cycle set in the DEVICE | Levels of Ventilation.
- **Delay for Operation (sec) (+/-):** Define length of time in seconds from the end or start of cycle you chose in Operate after end of cycle above, for the stir fans to operate.
- **Time for Operation (sec):** Define length of time in seconds for the stir fans to operate.
- **From/To Level:** Limit the program to operate between the levels defined.
- **From/To Time:** Define the time frame for the program to operate (24-hour format).

Program C, D, E (Sensors Diff Temp or Independent)

- **Temp Diff to Operate:** Set the degree of difference between sensors for stir fans to begin operating.

NOTE: If this parameter is set to 0 (zero), the variable stir fan runs independently of the sensors.

- **Diff between Sensor Number:** Select a sensor to define one temperature reading.
- **Diff between Sensor Number:** Select a second sensor to define a temperature reading from a different area.
- **Cycle On time (sec):** Define the length of time in seconds you would like the stir fan to operate during the cycle.
- **Cycle Off time (sec):** Define the length of time in seconds you would like the stir fan to be off during the cycle.
- **From/To Level:** Limit the program to operate between the levels defined.
- **From/To Time:** Define the time frame for the program to operate (24-hour format).
- **Stop During Fan Operation:** Select YES to run the heaters when the fans are operating.
- **Variable Stir Fan:** Select the stir fan to be used.
- **Min/Max Variable Stir Fan Speed:** Enter the minimum and maximum speed (in percentage).

4.5.2 Stir Fan Program Help | Set Definitions Version 4.03 and Below

Program A (for Minimum Ventilation)

- **Operate after End of Cycle:** Set when stir fan begins operating. It can be at the end of the ON cycle or the OFF cycle set in the DEVICE | Levels of Ventilation.
- **Delay for Operation (sec) (+/-):** Define length of time in seconds from the end or start of cycle you chose in Operate after end of cycle above, for the stir fans to operate.
- **Time for Operation (sec):** Define length of time in seconds for the stir fans to operate.
- **From/To Level:** Limit the program to operate between the levels defined.
- **From/To Time:** Define the time frame for the program to operate (24-hour format).

NOTE: See the examples below. They show how the various delays work with respect to the minimum ventilation fan timers defined in DEVICE | Levels of Ventilation.
Example 1 of Program A:

![System Parameters Table]

Example 2 of Program A

![System Parameters Table]

Program B (Sensors Different Temperature)

- Temp Diff to Operate: Set the degree of difference between sensors for stir fans to begin operating.
- Diff between Sensor Number: Select a sensor to define one temperature reading.
- Diff between Sensor Number: Select a second sensor to define a temperature reading from a different area.
• Cycle On time (sec): Define the length of time in seconds you would like the stir fan to operate during the cycle.
• Cycle Off time (sec): Define the length of time in seconds you would like the stir fan to be off during the cycle.

NOTE: The other parameters are explained in the program above.

Program C (for Heaters)

• Diff below Target to Operate: Set the degree of difference below the target temperature for stir fans to operate.

NOTE: Additional parameters are the same as in Programs A & B, explained above.

Program D & E (Independent)

Programs D and E enable you to set the desired cycle, level range, and time range for the stir fans to operate. They do not rely on ventilation cycles or temperature readings, thus making them independent.

4.6 Cool Pad

This menu sets the operating conditions for Cool Pad.

• Day: Set growth day.
• Start Time: The cool pad begins operating.
• End Time: The cool pad ceases to operate.
 o It is possible to set multiple start and stop times for a single day.
 o In the screen above, growth day jumps from day 7 to day 14, the cool pad continues to work according to day 7 settings from growth day 7 through growth day 14.
• Tunnel Differential: Set difference from tunnel temperature to use this setting. You can use negative differential temperatures.
 o Note the settings for Day 14. The Platinum uses the maximum temperature differential that applies to choose the correct settings.
• To Humidity: Set maximum humidity allowed before stopping cool pad. You can enter 100%.
• On Sec: Set the maximum on time for each cycle of cool pad operation.
• Off Sec: Set the minimum off time for each cycle of cool pad operation.
4.6.1 Cool Pad Help | Set Definitions

- **Temperature Band**: Define the on/off hysteresis relative to temperature.
- **Humidity Band (%)**: Define the on/off hysteresis relative to humidity.
- **Flush Cool Pad At**: Set time of day (hh:mm) to start a continuous application of water to the cool cells in order clean them of deposits.
- **Cool Pad Flush Duration (minutes)**: Set the length of time in minutes for flushing. If parameter is set, flush is applied without regard to ventilation level or operating mode.
- **Diff Between Cool Pads Stage**: If cool pads are defined on the same sensor or average, then the following cool pads begin operating after the previous, but only after the difference set in this parameter.
- **Min Level to Enable Operation**: Select the minimum ventilation level to operate the cool cells. This does not apply to the flush functions.

Example: Cool Pad ON temperature = 80°, Diff set to 2° F:

<table>
<thead>
<tr>
<th>Cool Pad #</th>
<th>Assigned Sensor</th>
<th>Diff Between Cool Pads Stage</th>
<th>Actual ON temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average</td>
<td>0.0</td>
<td>80°</td>
</tr>
<tr>
<td>2</td>
<td>Average</td>
<td>2.0</td>
<td>82°</td>
</tr>
<tr>
<td>3</td>
<td>Temp Sensor 2</td>
<td>0.0</td>
<td>80°</td>
</tr>
<tr>
<td>4</td>
<td>Temp Sensor 2</td>
<td>2.0</td>
<td>82°</td>
</tr>
</tbody>
</table>
4.7 Foggers

This menu sets the operating conditions for the Foggers. The main difference between the Fogger Menu and the Cool Pad Menu is the different temperature reference point. The Fogger Temperature Differentials are relative to the target temperature instead of the tunnel entry temperature.

- **Day**: Set growth day
- **Start Time & End Time**: Time of day you want foggers to start and stop.
 - It is possible to set multiple start and stop times for single day.
 - In the screen above, the first programmed line is at day 47. The foggers do not operate before growth day 47 in this case. Since there are no entries other than day 47, the day 47 program lines apply from then on.
- **Target Differential**: Set difference from target temperature to trigger foggers.
- **To Humidity**: Set maximum humidity allowed before stopping foggers.
- **On Sec**: Set the maximum on time for each cycle of fogger operation.
- **Off Sec**: Set the minimum off time for each cycle of fogger operation.

4.7.1 Foggers Help | Set Definitions

- **Temperature Band**: Define the on/off hysteresis relative to temperature.
- **Humidity Band (%)**: Define the on/off hysteresis relative to humidity.
- **Min Level to Enable Operation**: Select the minimum ventilation level to operate the foggers.
Max Level to Enable Operation: Set the maximum ventilation level for fogger operation.

4.8 Light

This menu sets the operating conditions for lights. The controller has a capacity for up to four channels of *On/Off Lights* and up to four channels of *Dimmer Lights*.

NOTE: Version 3.03 and higher support setting the light table based on feed days.

The configuration of this menu is dependent on the Water and Feed Help | Set Definitions (page 46) configuration:

- If you select Daily, the above screen appears when you select Light; configure the Light menu once.
- If you select 2 – 6 Days or Week, the screen below appears.

1. Select Feed and press **Enter**. The Light parameters screen appears. These parameters configure the Light functions on feed days.
2. Configure the parameters.
3. Select No Feed and press **Enter**. The Light parameters screen appears. These parameters configure the Light functions on non-feed days.
4. Configure the parameters.

- **Day:** Set Growth Day

In the example, the brood lights (channel 1) and bright center lights (channel 2) turn on from day 1, while the grow end lights (channel 3) are off. The example shows two channels of light dimmer, Channel 1 at 100% and Channel 2 at 0% (for baby chicks in the brood zone).

- **Time:** Set event times for the lights.
 - On day 12, the center lights turn off, and the dimmer lights go to 45%. There are two periods of darkness: from 01:00 to 03:00 in the morning, and 09:00 PM to midnight. This program repeats until day 25.
From day 25 the on/off lights stay off, and the dimmer lights provide dim light during the on periods, and go out fully for two periods of darkness. The dark periods total 6 hours, being from midnight to 03:00 AM and from 08:00 PM (20:00) to 11:00 PM (23:00).

- **Light**: Check mark the desired light(s) you would like to turn on. Apply dots for lights you would like to turn off. Switch between check marks and dots by pressing the +/- key.
- **Intensity (%)**: Set intensity in percentage for light dimmer(s). Dimmer lights start to brighten if the intensity increases, and complete dimming if the intensity decreases at the set time. That is, they start dimming the ‘sunset time’ in advance of the set time (see Help | Set below).

4.8.1 Light Help | Set Definitions

- **Sunrise Time (minutes)**: The amount of time required for the light intensity to rise from 0% to the designated level.
- **Sunset Time (minutes)**: The amount of time required for the light intensity to decline from the designated level to 0%.
- **Allow Spiking from Day**: The day spiking begins.
- **Spike Cycle (minutes)**: The time length that the spike is at its maximum level. Reaching the maximum level and returning to the preset level both take one minute. For example if the spike duration is 10 minutes, the spike cycle is 8 minutes.
- **Spike Durations (minutes)**: The total amount of time of the spike cycle, including the rise and fall times.
- **Spike Increase Amount**: Set the increase in intensity for the spike in relation to the current light intensity.
- **Signal Light Is**: Only one light operates during feeding times. Select which light is lit or choose “None”.

NOTE: After the feeding period ends, all lights selected in the Light Parameters screen relight.

- **Signal Before Feed (seconds)**: Amount of time, before the feeding starts, that all other lights go off.
- **Signal During Feed (seconds)**: Amount of time that the selected light remains on after feeding ends.

NOTE: The above two parameters are disabled on no feed days.
• **Light Sensor Active**: The light sensor turns off all lights when sufficient outside lights exists (refer to Light Sensor Calibration, page 76). If a light sensor is installed, enable this option to turn off the light during feeding time when there is sufficient outside light.

NOTE: The above parameter is only available in Version 3.03 and higher.

4.8.1.1 Lighting without Spiking

![Graph showing lighting without spiking](image)

4.8.1.2 Lighting with Spiking

![Graph showing lighting with spiking](image)

NOTE: The initial reference time for the Spike Cycle is the end of Sunrise. The spike begins Spike Duration minutes before the end of the Spike Cycle, and has one minute up and down ramps in intensity. If Sunrise Duration is set to zero, no spiking occurs.
4.9 Water & Feed

This menu sets the operating conditions for water and feed devices.

- **Day**: Set growth day.
- **Time**: Set event times for water, feeder, or auger. Check marks indicate ON at the event time, and dots indicate OFF. Toggle between check marks and dots with the +/- keys.
- **Water**: Select a check mark to mark water lines to turn on, dot the ones to turn off.
- **Feeder**: Check mark feed lines to turn on, dot the ones to turn off.
- **Auger**: Check mark auger lines to turn on, dot the ones to turn off.

NOTE: You can implement mealtime, clean up meals and other options similarly as shown earlier in the light programs.

4.9.1 Water and Feed Help | Set Definitions

These parameters define the feed and water delivery schedule through the week.

NOTE: The Water and Feed parameters work in conjunction with the Lighting parameters.

- **Daily**: Same schedule for every day of the week.
- **2 – 6 Days**: Select a cycle that lasts the number of days chosen and then repeats itself. For example, 2 Days means that the cycle lasts two days and then repeats itself.
• **Week**: Select which days in the week that feed and water are delivered.

<table>
<thead>
<tr>
<th>SYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER & FEEDS</td>
</tr>
<tr>
<td>Feed Day Cycle</td>
</tr>
<tr>
<td>WEEK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAYS CYCLE</th>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed:</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER ON NO FEED DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
</tr>
<tr>
<td>10:00</td>
</tr>
</tbody>
</table>

NOTE: If you choose Daily, the Scale function is always enabled. If you choose 2-6 Days or Week, the Scale function is **disabled** on non-feeding days.

NOTE: If you want to provide feed every day, select Daily. Selecting Week and marking each day causes problems with this function.

If you select the 2 – 6 Day schedule or the Week schedule, configure:

• **Days Cycle (2 – 6 Days)**: Select which days in the cycle that feed and water is delivered.
• **Week Cycle**: Select the days that feed and water is delivered.
• **Water on No Feed Days**: Select up to two time periods when water is delivered on non-feed days.

NOTE: On feed days, water is delivered when feed is delivered.

4.10 Extra Systems

This menu is for setting the parameters of the other devices that are not listed in the controller.

|--------|--------------------------|---------------------|--------------------------|-------------------|---------------------|-------------|------------|---------|----------------|----------------------|------------------------|---------------------|

<table>
<thead>
<tr>
<th>EXTRA SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Start Time</td>
</tr>
<tr>
<td>End Time</td>
</tr>
<tr>
<td>From Temp</td>
</tr>
<tr>
<td>To Temp</td>
</tr>
<tr>
<td>From Hum</td>
</tr>
<tr>
<td>To Hum</td>
</tr>
<tr>
<td>On (sec)</td>
</tr>
<tr>
<td>Off (sec)</td>
</tr>
</tbody>
</table>

• **Start Time**: Time at which this Extra System starts.
• **End Time**: Time at which this Extra System stops.
• **From Temp**: Temperature above which Extra System operates.
• **To Temp**: Temperature below which Extra System operates.
• **From Humidity**: Humidity above which Extra System operates.
• **To Humidity**: Humidity below which Extra System operates.
• **On (sec)**: On time for the Extra System. If set to 0, the extra system does not operate.
• **Off (sec):** Off time for Extra System after completion of on time. If you have values in both **ON** and **Off**, the extra system cycles. If you have zero OFF time, and any ON time, the system simply stays on as long as the other parameters are satisfied.

NOTE: All parameters must be satisfied for an Extra System to operate. If the temperature is below the From Temperature or the Humidity below the From Humidity for example, the system is OFF. You can assign specific temperature sensors to an Extra System in **Install | Temp Definition.** The Extra System uses the Inside Humidity, not the Outside Humidity. If there is no humidity sensor, the Extra Systems ignore the humidity parameters.

4.11 Emergency Setting

This selection applies to optional emergency cards. These cards are battery backed, and operate as standard switch and relay cards during normal operation. If an emergency occurs, the cards continue to operate according to their emergency settings.

1. **Relay:** The Platinum determines the relay numbers automatically from the position in the controller in which the Emergency Switch card is installed.

2. **Function:** Assign the relay function in **Install | Relay Layout.** Your selections will likely be different from the example above. The Platinum does not allow certain selections for the emergency functions.

3. **Differential:** The difference from target temperature at which the device operates during emergency operation.

4. **Day:** After this day, the device operates continuously without regard to temperature setting during emergency operation. In this example:

 - Exhaust Fan 1 operates up to the target temperature using the Min Vent timer calculated in **Help | Set** on the next page, and continuously above the target temperature. However, from Growth Day 10 forward, the fan operates continuously without regard to temperature.
 - Tunnel Fan 6 is off below 2.0º + Target, and operates continuously if the temperature is more than 2.0º above Target Temperature. However, if the Growth Day is 20 or greater, Tunnel Fan 6 operates continuously without regard to temperature during emergency conditions.

5. **Operate:** Choose whether the Min Vent timer applies to this device or only the temperature differential.
4.11.1 Emergency Setting Help | Set Definitions

While viewing the Emergency Setting menu, press HELP, select SET and press ENTER.

- **Diff above target for emergency**: Set a value above temperature target at which the emergency card enters emergency operation.
- **Diff below target for emergency**: Set a value below temperature target at which the emergency card enters emergency operation.
- **Min. vent on time day 1 (sec)**: Set the minimum ventilation on time for 1-day-old birds in this parameter. The card calculates on times between days 1 to 21.
- **Min. vent off time day 1 (sec)**: Set the off time for minimum ventilation cycle timer during emergency for growth day 1.
- **Min. vent on time day 21 (sec)**: Set the on time for minimum ventilation for three-week old birds.
- **Min. vent off time day 21 (sec)**: Set the off time for minimum ventilation cycle timer during emergency for growth day 21.
- **Delay time to start fans (sec)**: Set a delay time for the card to wait upon entering emergency before starting fans. This delay gives air inlet devices time to pre-position before fans turn on and build static pressure. Otherwise, the static pressure could cause air inlet curtains to stick to wire mesh barriers.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15.0</td>
<td>-10.0</td>
<td>30</td>
<td>300</td>
<td>270</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>
4.12 Water on Demand

The Water On Demand (WOD) function enables regulating the pressure of all nipple lines in the house from one central point, ensuring uniform pressure in all lines. The function also enables immediate transitioning between different preset pressures of all nipple lines in the house by closing and opening of valves at the central point (manual or solenoid according to the mode installed).

1. In *Installation > Relay Layout* designate up to four relays as WOD valves (relays 179 to 182). Refer to Relay Layout, page 84 for details.

2. In *Device > Water on Demand*, configure the following parameters:
 - **Day**: Specifies the day to activate the selected WOD valve
 - **From Time/To Time**: Specifies the time to activate and deactivate the specified WOD valve
 - **WOD**: Specifies the WOD valve to be activated

NOTE: You can specify up to 50 time periods.

NOTE: Versions 3.06 and 4.06 and higher support the WOD function.
5. MANAGE MENU

The following sections detail the Management Menu.

- Bird Inventory, page 51
- Feed Inventory, page 51
- Time & Date, page 53
- Growth Day & Flock, page 53
- Alarm Setting, page 53
- Alarm Reset, page 56
- Fail Safe Setting, page 57
- Password, page 57
- Relay Current, page 57

5.1 Bird Inventory

Maintain your bird inventory by entering data into the controller.

- Maintain bird inventory by entering quantities in the upper half of the screen. There are separate columns for male and female. If you do not wish to keep separate data, simply enter the data into one or the other.
- Initially, enter the number of birds placed. Thereafter, enter the quantity found dead, culled (Add Culled) or moved as needed. The Platinum shows totals and subtotals in the lower portion of the screen.
- You can correct an error, so long as you correct it on the same day before midnight, by entering a negative quantity (press the +/- key after the number) to subtract the error. After midnight, the information transfers to the HISTORY Menu.

5.2 Feed Inventory

Maintain your feed inventory by entering data into the controller.
To enter feed inventory manually:
1. Type the day of the month and press ENTER.
2. Select the month and press ENTER.
3. Type the two-digit year and press ENTER.
4. Enter the feed quantity under the Feed Bins and press ENTER. The cumulative total appears in the Total Feed row.
5. To delete an entry, change the quantity to zero for all feed bins and press ENTER. Exit the menu and the entry disappears when you enter the menu again.

NOTE: Version 4.05 and higher supports four feed bins. Previous versions support two bins.

If you have installed load cells and connected feed bin scales to your Platinum, it automatically maintains feed inventory, including delivery dates and feed consumption data. You can monitor your fill system and maintain approximate feed inventory using the Digital Inputs. In this case, you need to enter your own delivery dates.

This information transfers to the History | Water & Feed menus daily, and optionally as often as selected (by the minute) in History View.

5.2.1 Feed Inventory Help | Set Definitions

- **Total Feed in Bin-1/Bin-2/Bin-3/Bin-4:** Manually change or correct the amount of feed in the bins.
- **Active Feed Bin:** Select the desired feed bin for use. It is possible to select both.
5.3 Time & Date

This menu sets the current time and date for the controller.

- **Current Time**: Enter the current time in 24 hour format.
- **Date**: Enter the date in day-month-year format.
- **Day of the Week**: Select the day of the week from the drop down menu.

5.4 Growth Day & Flock

This menu defines the number of growth days and flock number.

- **Current Growth Day**: Enter current growth day, if necessary. It is possible to enter negative growth days up to -2. If you reset the growth day for a new flock using this tool, your old history data does not clear. Use New Flock function to clear out old history in preparation for new birds.
- **Flock No.**: The controller automatically increments the flock number each time you choose New Flock. You can edit the flock number. Since this field accepts six digits, some producers enter a flock number that is made of the day, month and year the birds arrived.
- **New Flock**: Use the new flock function on arrival of a new set of birds to set the growth day back to 1, 0, -1, or -2, and to clear out old history data.

5.5 Alarm Setting

This menu defines the various alarm settings.

NOTE: See Fail Safe Setting.
- **Global Alarm Delay (sec)**: Alarms without a separate alarm delay, use this global delay before signaling the alarm.
- **Alarm Reminder (min., 0-Disable)**: Set a reminder after a period of time in minutes if the situation has not yet been corrected.

Sensor Alarm

- **Sensor Low Temperature Range**: Sets the minimum reading a sensor can have to be considered a valid sensor reading. Sensor readings below this are rejected. This generates a sensor out of range alarm. This does not apply to the special Circuit Breaker Sensor or Outside Temperature Sensor.
- **Sensor High Temperature Range**: Sets the maximum reading a sensor may have to be considered a valid sensor reading. Sensor readings above this reading are rejected. This generates a sensor out of range alarm. This does not apply to the special Circuit Breaker Sensor or Outside Temperature Sensor.
- **Sensor Alarm-Differential from Low Alarm**: Individual sensor (or zone) alarm if any active sensor reads this much or more below the Control | Temperature Curve | Low Alarm Temperature.
- **Sensor Alarm-Differential from High Alarm**: Individual active growth area sensors alarm if they read this much or more above the Control | Temperature Curve | High Alarm Temperature.

Alarm

- **Alarm Test at Time**: Schedule an alarm test at a particular time.
- **Day of Alarm Test**: Choose Daily or a particular day of the week for the scheduled alarm.
- **Alarm Test Duration (sec)**: Choose a specific duration for the Alarm Test.

Auger Overtime Alarm

- **Auger Overtime Delay**: Set the maximum auger run time for your cross fill system. If you have a monitor connected to the digital inputs programmed as Feeder-1 Overtime or Feeder-2 Overtime the Platinum sends an alarm after this delay.
- **Feeder Off During Overtime**: Choose whether to shut the feed systems off after a feeder overtime alarm. Options:
 - **No**: All augers and feeders remain on.
 - **All**: All augers and feeders shut down.
 - **Related**: Only the specific auger from which the alarm originated and it feeders shut down.

NOTE: If you choose All or Related, the feed system turns off and does not resume until you Reset Alarm in the Management Menu.

Auger Empty Alarm

- **Condition Detection Delay (sec.)**: Platinum sends an alarm when the current goes to the level set in the following parameter after this delay.
- **Below Nominal Current**: Send an alarm when the nominal current drops to the level set here.

NOTE: Version 4.05 and above supports the Auger Empty Alarm. This alarm is operative only if 1) Current Sense Relays are installed and calibrated 2) augers have been calibrated.
5.5.1 Alarm Setting Help | Set Definitions

• **Advanced Alarms**: When selecting YES, the following additional alarms appear on the ALARM SETTINGS screen (press MENU and then ENTER to reenter the screen):

 Feed Alarms
 - **Allow Feed Alarm From/To**: Set a starting time from which the controller can send feed shortage alarms.
 - **Bin 1/2 Low Feed Alarm Limit**: Alarm if feed in Bin 1/2 is below this limit and time is between From and To limits.

 NOTE: Version 4.05 and higher supports up to four feed bins.

 Water Overflow Alarms
 - **According to Light Table**: Change overflow alarm level when the lights are off.
 - **First Day**: Overflow on the FIRST day applies to the first day operation. You can define a first day at which to start increasing the overflow limit automatically. Days prior to the ‘First Day’ use the First Day overflow limit; days following the first day have an incremental curve toward the LAST DAY OVERFLOW parameter setting.
 - **Overflow on First Day**: Number of gallons/liters per minute that generate an overflow alarm on the first day.
 - **Last Day**: Set the last day for the Overflow curve.
 - **Overflow on Last Day**: Overflow (Gallons/Liters) on the last day sets the maximum overflow limit will be continued after that day.
 - **Overflow At Dark**: Select overflow limit. When it is dark, controller checks every minute.
 - **Overflow Alarm Delay**: Define delay time before the controller generates an overflow alarm.
 - **Extra Delay At Light Start**: When the first light appears, define the amount of minutes before the controller begins to operate according to the set Overflow for that day.
 - **Fogger Water Overflow**: Define the water overflow for foggers (per minute).

Water Shortage Alarms

- **Allow Water Shortage Alarm From/To**: Set the period for which the controller generates water shortage alarms.
• **Shortage During Lights Off:** Select whether water shortage alarm should be disabled when all lights are out.
• **Quantity for Shortage:** Minimum flow rate that must be maintained or a water shortage alarm is generated.
• **Shortage Alarm Delay:** Minimum period of time that the shortage must extend through before generating an alarm.

Bird Scales Alarms

- **Allow Bird Scale Alarms From/To:** Set time frame for which the controller begins and ends generating alarms for the bird scale.

Auxiliary Alarms

- Assign auxiliary alarms in the Install menu. Note that digital sensors, auxiliary alarm input with related relay must always match their relay status.
- **AUX. Alarm Delay (sec):** Separate from the **Global Alarm Delay**. If there is a dry contact, the alarm is sent after the defined AUX. Alarm Delay.

Circuit Breaker Alarm

- **Temperature for Circuit Breaker Alarm:** Set circuit breaker alarm temperature.

5.6 Alarm Reset

This menu functions as an alarm and siren reset.

- **Alarm Reset:**
 - **NO:** Does not reset alarms
 - **SIREN ONLY:** Resets only the siren, alarms remain
 - **YES:** Resets alarms

Selecting **YES:**
- Clears the alarm relay for all current alarms. The alarms may remain valid, but the unit does not register new alarms. If a new alarm occurs, or an existing alarm clears and reoccurs, the alarm relay signals again (after any appropriate delay).
- Restores normal operation after an emergency pressure or feed overrun incident. If the controller experiences a high-pressure alarm for too long, it enters emergency pressure operation by opening all known air sources. Curtains open to preset amounts as set in **CONTROL | Static Pressure**. If you select **SIREN ONLY**, the alarm relay returns to the no alarm condition, but the emergency pressure status continues.
- Restores normal operation after a feed overrun situation that calls for turning off the feeding system. If the feed monitor senses the cross auger runs too long, it trips a feed overrun alarm and optionally turns off the feed system. If you select **SIREN ONLY**, the alarm relay returns to the no alarm condition, but the feed overrun status continues.
5.7 Fail Safe Setting

When there is a problem such as extremely high air temperature, the Fail-Safe function immediately activates a backup system (for example the RBU-27) to ensure that adequate ventilation continues.

The Platinum has six options besides controller failure or power off to activate the fail-safe relay. Apply the additional settings by using the ‘+/-’ key:

- **High/Low Temperature**: Select to trigger fail-safe when the temperature is exceptionally high/low.
- **Low/High Static Pressure**: Select to trigger fail-safe when the static pressure is exceptionally low/high.
- **Avg. Temperature Fail**: Select to trigger fail-safe when all sensors in house fail.
- **AUX**: Select to trigger fail-safe when auxiliary dry contact occurs.

5.8 Password

The owner can set new passwords for himself, all users and the Visitor. The owner cannot see user passwords once entered or changed by the users. The users can access the controller and make changes to all controller settings and their own password. A user can only see and change his own password. The visitor can access the controller, but cannot make changes. Each time someone accesses the controller with a password, an event is recorded in the HISTORY | Table of Events.

NOTE: If your controller uses passwords, the controller also requires a password entry to acknowledge switch position changes. If the switch change is not acknowledged the controller signals an alarm.

5.9 Relay Current

NOTE: Version 4.03 and higher supports the Relay Current feature. The Relay Current feature supports single phase electricity only.

This menu configures the relay current sense parameters. You can configure:

- the minimum and maximum amperage flowing to the relays
- the relay current alarm
voltage type

NOTE: Configuring the amperage is not required. The Platinum controller automatically configures default settings.

NOTE: Calibrate the relay before configuring these parameters. Refer to Current Sense Relay Calibration, page 81. Relays that are not calibrated (or if the relay is not a Current Sense relay) do not display amperage readings (see relays 37 and 38 in the above figure).

To configure the relay current:
1. Using the arrow buttons, select a minimum or maximum amperage setting.
2. Configure the parameter as required.

NOTE: The minimum amperage must be greater than the default minimum and the maximum amperage must be less than the default maximum. For example, relay 35’s amperage must be more than 2.3 and less than 5.0 amps. The Nom amperage is the parameter set when calibrating the relay (refer to page 81).

3. Configure the alarm:
 - No: Alarms are not sent in the event of low or high current
 - Yes: Alarms are sent in the event of low or high current
 - No at zero: The controller sends an alarm if the current is low or high, but not if power is cut off entirely.
4. Configure the voltage: Select 110 or 220 volts.

NOTE: All relays’ minimum/maximum current settings per equipment type must be within 30% (±) of the nominal value. However, the augers minimum can go down to 0.0 amperes.
6 SCALE MENU

The following sections detail the weighing functions.

- Scale Layout, page 59
- General Settings, page 59
- Bird Scale Setting, page 60
- Feed Bin Setting, page 61
- Bird Curve, page 62
- History, page 62
- Feed Conversion, page 63
- Test, page 63
- Calibration, page 64

6.1 Scale Layout

Use Scale Layout to define the scales or feed bins connected to the controller.

Define weighing device attached to each channel of the scale option card. It is possible to program either bird scale and/or feed bin (silo) scale.

NOTE: Version 4.05 and higher supports up to four feed bins. Previous versions support up to two bins.

6.2 General Settings

This menu sets general weighing parameters.

- **Bird Scale Mode**: Select the weighing method:
 - **SEXED**: Considers all birds to be the same sex or 'unisex' as in mixed broilers. It computes its own reference weight or acceptable range from the weighed birds.
MIXED: Considers the flock to be mixed males and females, with the goal of identifying each bird weight as male or female, which is, classifying it according to a pre-programmed pair of expected weight curves.

- **Uniformity Range (5-30%)**: Controller classifies bird weights within this percentage of the average as uniform. Default is 10%.
- **Curve Selector (for mixed)**: There are three standard pairs of pre-programmed weight curves. If you use the mixed weighing method, edit the curves to match your expected growth profile (BROILER, TURKEY, or BREEDER).

6.2.1 General Settings Help | Set Definitions

- **Factory Default Curve**: Select YES to return bird curves to the factory default settings

6.3 Bird Scale Setting

There are two different weighing options available; the option can be selected in the previous section SCALE | General Settings.

- **Start Time**: Set the hour you would like the scale to begin weighing
- **End Time**: Set the hour you would like the scale to stop weighing
- Range – (0-100%): Band above and below reference weight
- Reference Weight 1: Starting out weight for scale 1
- Reference Weight 2: Starting out weight for scale 2

6.4 Feed Bin Setting

These settings help you monitor your feed bin through weighing. There are two events that take place, emptying (feeding) and filling (loading).

NOTE: Feed Bins be defined in **Scale Layout** for the following parameters to be functional.

SCALE

- 1. SCALE LAYOUT
- 2. GENERAL SETTINGS
- 3. BIRD SCALE SETTING
- 4. FEED BIN SETTING
- 5. BIRD CURVE
- 6. HISTORY
- 7. FEED CONVERSION
- 8. TEST
- 9. CALIBRATION

<table>
<thead>
<tr>
<th>FEED BIN SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Emptying Weight</td>
</tr>
<tr>
<td>Minimum Filling Weight</td>
</tr>
<tr>
<td>Filling Detection Weight</td>
</tr>
<tr>
<td>Resume Time (minute)</td>
</tr>
</tbody>
</table>

- **Minimum Emptying Weight** (Default: 20 Kg): Define the accumulated emptying weight from the bin during feeding time for it to be recorded as an event. Once it has been recorded, the counter resets.
- **Minimum Filling Weight** (Default: 2000 Kg): Define weight required to be filled during loading to be recorded in **History – Feed; History – History View; Scale – Feed Conversion**
- **Filling Detection Weight** (Default: 300 Kg): Define the weight you want your controller to detect a filling in order to stop augers.
- **Resume Time (minute)** (Default: 5 min.): Once loading is completed, define the time you want your controller to count down for the augers to resume normal operation.

The following is a typical scenario that will help in understanding how to define the Feed Bin Settings:

A loading truck will come to fill the bin. Define the **Filling Detection Weight** to stop the augers from operating during a loading event (Default: 300 Kg). Next, a **Minimum Filling Weight** needs to be defined in order to have the filling event recorded in the **Feed Inventory** (Default: 2000 Kg). Once the loading of the feed is finished, the timer begins to count down for the augers to resume normal operation (Resume Time, Default: 5 minutes) and for the filling event to be recorded as completed. Define the **Minimum Emptying Weight** for the feeding event to be recorded in the following three locations:

1. **History** – Feed
2. **History** – History View
3. **Scale** – Feed Conversion
6.5 Bird Curve

This screen displays data according to growth day for BROILERS, TURKEYS, or BREEDERS, previously set in SCALE | General Settings.

Edit the growth days and weights for the bird curves to fit individual preference.

6.6 History

The scale history shows bird weight statistics. You can review daily data for each scale, or separately. The unit records up to two-bird scale data; if you have more than one scale-1 or one scale-2, their data is combined.

- If you selected SEXED weighing, the history includes average data for the combined scales, and on the next screens separate data for each scale.
- If you select MIXED weighing, the history includes average data for all birds, and separate male and female data for Scale 1 and for Scale 2.
 - Use the arrow keys to scroll to the separated scale data, or up and down for data that is off screen.
 - The average and the number of weights are the usual definition. The Standard Deviation is the usual biased estimator (see a suitable textbook on statistical measurements). The Uniformity is the industry standard 10% uniformity (number of birds per 100 within 10% of the average weight), and the Coefficient of Variation or C.V. is the normalized standard deviation (standard deviation divided by average times 100 %.)
6.7 Feed Conversion

This screen displays the amount of feed converted into the bird’s weight.

![Feed Conversion Table]

6.8 Test

This section is a real time table to show the statuses of all scales connected to the controller.

![Test Table]

Make sure that all status are O.K. If any of them show a different status, the scale is not installed properly. Unused positions can also show O.K.
6.9 Calibration

This menu calibrates the scales connected to the controller.

CAUTION Do not use scales while calibrating.

6.9.1 Scale Calibration

1. Follow instructions on the bottom section of the screen.
2. Wait until the progress bar displayed shows 100%.
3. Place a known weight on the scale and enter its weight.
4. Wait until the calibration progress bar reaches 100%.
5. Ensure “**Good Calibration.**”
6.9.2 Feed Bin Calibration

1. Follow instructions on the bottom section of the screens.
2. Wait until the progress bar displayed shows 100%.
3. Place a known weight or start filling the feed bin.
4. Wait until the calibration progress bar reaches 100%.
5. Ensure “Good Calibration.”

SCALE CALIBRATION

<table>
<thead>
<tr>
<th>Channel - Scale</th>
<th>Weight</th>
<th>Factor</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale-1</td>
<td>1008</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Scale-2</td>
<td>1008</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Feed Bin-1</td>
<td>0</td>
<td>2000</td>
<td>0</td>
</tr>
</tbody>
</table>

CHANNEL 1

Press ENTER to Calibrate or RIGHT ARROW to change Factor or Offset

CALIBRATION PROCESS CHANNEL 3

Press ENTER for Tare Registration

25%

CALIBRATION PROCESS CHANNEL 3

Good Calibration!

100%

CALIBRATION PROCESS CHANNEL 3

Place a Known Weight or start Filling And Press ENTER

Good Calibration!
7 HISTORY MENU

In the History Menu you can view data regarding:

- Temperature
- Humidity
- CO2
- Water
- Feed
- Mortality
- Heaters
- Radiant Heaters
- Alarms
- Table of Events
- History View
- Power Consumption

7.1 Temperature

The temperature history menu stores minimum, average and maximum temperatures by growth day. The average is weighted, so if most of the day has been warm the average is closer to the maximum than the minimum.

7.2 Humidity

The humidity history menu stores minimum, average and maximum inside humidity by growth day. The average is weighted, so if most of the day has been humid the average is closer to the maximum than the minimum.

NOTE: In Version 3.06/4.06, if two humidity sensors are installed, this screen displays their average. The History View display shows reading of both sensors only if they have been selected for logging.

7.3 CO2

The CO2 history menu stores minimum, average and maximum inside CO2 levels by growth day. The average is weighed, therefore if most of the day has been high CO2 levels the average is closer to the maximum than the minimum.

NOTE: This feature is only available in Version 3.02 and higher.
7.4 Water
The water menu records daily water consumption and shows the daily differential change from the previous day in percent. You must have the water monitor digital inputs connected. You can monitor up to two drinking water meters, total drinking water, total water, cool pad, fogger and cold pad flush consumption.

7.5 Feed
The feed menu records daily feed consumption and shows the daily differential change from the previous day in percent for two feed bins/fill systems. You must have a feed silo weighing system installed for the feed system, or monitor the auger system.

NOTE: Version 4.05 and higher supports four feed bins. Previous versions support two bins.

The feed data can be based on one of the following inputs. If more than one input is installed, priority is according to the order of the bulleted list.

- **Feed Bin**: If feed bins (load cells) are installed, feed consumption data of each bin is based on the feed bin weight.
- **Current Sense**: If Current Sense Relays for Augers are installed and calibrated (refer to Current Sense Relay Calibration, page 81), feed consumption data of each auger is based on the current sense, calculation method settings, and actual auger run-time. The run-time is calculated based on the measured current, when the actual current is higher than the nominal value (refer to Relay Current, page 57).
- **Feed Count**: If a feed count sensor is installed feed consumption for each feed count input is based on the feed count method settings (refer to Digital Sensors, page 87).

7.6 Mortality
The mortality history menu maintains daily summaries of mortality, cull and total dead. It also shows the percentage dead and gives an updated count of bird inventory. The history is maintained separately for male, female and total. Use the left and right arrow keys to switch to the next screen.

7.7 Heaters
The Platinum maintains daily total run times of each heater. The table fills several screens; to view the off screen data, use the arrow keys to scroll. The data is in hours: minutes format.

7.8 Radiant Heaters
The Platinum maintains daily total run times of each radiant heater, including separate data for low level and high-level heaters. The table fills several screens; to view the off screen data, use the arrow keys to scroll. The data is in hours: minutes format.

7.9 Alarms
The alarm history records the growth day and time of each alarm. Alarms that are currently active show up as flashing on the screen. Alarm history is not reset when using Management, Growth Date & Flock > New Flock. The last 250 alarms are saved, and as the table is filled, new alarms push out the older alarms.
7.10 Table of Events

The Platinum records significant events with growth day and time stamp. The Table of Events is 1000 events long and is not reset when using Management, Growth Date & Flock > New Flock. New events push out the older events.

Typical events recorded are switch changes, entry into tunnel mode, natural or minimum ventilation, alarm resets, ventilation mode changes and more. The Table of Events is an excellent tool to determine whether your controller is going in and out of tunnel due to marginal settings as well as finding and identifying problems.

NOTE: Go to the Table 6, page 92 to view all the available events.

7.11 History View

The History View menu has detailed history on a variety of sensors and data. Go to Help > Set under History View to select the particular data to collect.

Go to Install > Setup > History Resolution to set the frequency of your data collection. You can collect data as frequently as by the minute or only on a daily basis. Factory default collects one-hour data on a selection from the choices below.

- Under Help | Graph you can select a variety of graphs of the detailed history.
- In the HISTORY VIEW | HELP | SET menu, set the desired choice by using the ‘+/-’.

The options are as follows:

- Target Temp.
- House Temperature
 - Minimum, Average and Maximum
- Temp – 1-9
 - Minimum, Average and Maximum
- Attic Sensor
 - Minimum, Average and Maximum
- Outside Temperature
 - Minimum, Average and Maximum
- Humidity In/Out
 - Minimum, Average and Maximum
- Water Consumption
- Feed Consumption
- Level of Ventilation

NOTE: Altering choices erases old data and starts a fresh data set.

7.12 Power Consumption

This menu displays the daily power consumption (in kWh) of the heaters, fans, lights and other equipment and the change from the previous day.

NOTE: Current sense relays are required for this function to be enabled.

NOTE: Version 4.03 and higher supports this feature. The Relay Current feature supports single phase electricity only.
8 TEST MENU

The Test Menu screen shows internal information in order to verify that the Platinum is operating correctly. Moreover, it can help find broken wires or any other problems related to it.

• Switches & Relays, page 69
• Switches & Relays Extension, page 70
• Alarm, page 70
• Analog Sensors, page 70
• Digital Sensors, page 71
• Analog Output, page 71
• Static Pressure, page 71
• Communication, page 71
• Hardware Checklist, page 72
• Emergency Status, page 72

8.1 Switches & Relays

This menu displays a screen of identified switches and relays installed in the controller. Use this option to determine faulty hardware.

On When the switch is positioned ‘on’
Off When the switch is positioned ‘off’
Aut The usual state (Automatic)
XX The relay referred to has a failure
-- No switches
8.2 Switches & Relays Extension

Test the operation of the on/off/auto switches and relays in the optional Extension Box. The Platinum supports a maximum of 40 switches/relays in the basic controller. You can add an external extension box to obtain up to 80 switches/relays total.

8.3 Alarm

Press Enter to toggle the Alarm Relay. ON indicates Alarm, OFF indicates No Alarm. Note that the alarm relay is powered for the ‘NO ALARM’ condition to provide automatic Power Fail Alarm in case of power failure to the Platinum. That is, the Normally Open side is closed during NO ALARM.

8.4 Analog Sensors

Observe the converter readings for analog sensors with this menu. The readings can vary from 0 to 1023.

The values displayed in the 'Value' column indicate that the analog sensor is either operating or not connected according to the following:

- If a very large value is shown (such as a four digit number) or a small value is shown (such as a one digit number): sensor is not connected.
- If the unit displays a 3-digit number, usually beginning with the digit '4: sensor is operating.
8.5 Digital Sensors

Observe the state of the eight digital sensors. A ‘1’ indication implies a shorted input, a ‘0’ an open input. The digital sensors operate with dry contact inputs such as the Arad Water Meter, or micro-switches.

You can apply a short/open input to each channel; the response is then displayed.

8.6 Analog Output

This selection tests light dimmers, variable speed fans, and variable heaters.

1. Scroll to the required output.
2. Enter the test voltage and verify that the device is operating.

8.7 Static Pressure

Observe the converter readings for the static pressure sensor. The nominal ‘zero’ pressure reading is 130. Remove the air hoses from the brass connectors on the left side outside of the controller to check this reading.

8.8 Communication

This menu facilitates testing on communication networks. A multiplexer in loop back mode is used to test the communication. The Platinum follows its’ own communication to check for failed hardware.

Follow the instructions displayed on the screen.
8.9 Hardware Checklist

Check the installed hardware that has been identified by the Plug and Play system. The system detects all cards except Communication. The standard optional Communication card provides lightning protection, and does not have local computerized intelligence to identify itself to the system. Note that if a card is missing, turn the power OFF and then ON for a card rescan.

8.10 Emergency Status

This option views the status of emergency cards if installed.

- Emergency card sensor temperature
- Current set or target temperature
- Backup battery level
- Minimum ventilation cycle timer ON/OFF time
9 SERVICE MENU

The Service Menu items calibrate various Platinum functions.

- Temperature Calibration, page 73
- Humidity Calibration, page 74
- CO2 Sensor, page 74
- Static Pressure Calibration, page 74
- Light Sensor Calibration, page 76
- Feed Calibration, page 76
- Water Calibration, page 77
- Vent Calibration, page 77
- Nipple Flushing, page 77
- Feeders & Drinkers, page 79
- Save Settings to Plug, page 80
- Read from Plug, page 80
- Current Sense Relay Calibration, page 81

9.1 Temperature Calibration

The Platinum temperature sensors are typically accurate to approximately 0.5º F within the range of temperatures for poultry production. Calibrate them in this menu by adding/subtracting a constant correction factor to each sensor. Adjust the sensor of your choice with the left/right arrow keys.

Calibrating against infrared or in air temperature sensors generally results in less accuracy than the basic sensors have without calibration.

To calibrate the sensor:
1. Obtain an accurate reference sensors and a pail of water at the approximate temperature desired.
2. Stir the reference sensor together with the Platinum sensor vigorously in the bucket of water. Keep hands off the sensor itself, so that it responds accurately to the water temperature. Stirring is necessary to preclude stratification within the bucket of water.
3. Call out the accurate reading to a second person standing at the Platinum. Walkie-talkie radios may be a good idea.
4. The individual at the controller should double-check that you are calibrating the correct sensor. You might warm/cool the sensor temporarily to see which sensor changes temperature appropriately.
5. Once you determine the correct temperature and allow approximately one minute for stabilization in the water, adjust the sensor reading at the controller.

6. Offset the factor using the left/right arrow keys.

9.2 Humidity Calibration

To calibrate the humidity level, obtain a suitable humidity test kit, and use the procedures described there. They are commonly available via the Internet.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Humidity</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>58.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Out</td>
<td>N/A</td>
<td>---</td>
</tr>
</tbody>
</table>

Press Left/Right Arrows to Calibrate

- Adjust the Platinum reading as needed using the left/right arrow keys.

9.3 CO2 Sensor

To calibrate the CO2 level, obtain a suitable test kit and use the procedures described in the kit. Ensure that the house is well ventilated, either naturally or using fans.

<table>
<thead>
<tr>
<th>Value</th>
<th>PPM at 4 mA / 1 VDC</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPM at 20 mA / 5 VDC</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>Factor (PPM)</td>
<td>22</td>
</tr>
</tbody>
</table>

CO2 (ppm): 482

- Ppm at 4 mA / 1 VDC: Parts per million for 4 mA or 1 VDC
- Ppm at 20 mA / 5 VDC: Parts per million for 20 mA or 5 VDC
- Factor (ppm): (+/-) ppm shift from the current reading
- CO2 (ppm): Current CO2 readings

Adjust the Platinum reading as needed using the left/right arrow keys.

9.4 Static Pressure Calibration

The Static Pressure should be 0 when there is no ventilation and the house is closed. When the controller reads 130 A/D counts, this is 0 static pressure. Check for blocked air hoses or wind interference for inaccurate readings.

NOTE: Allow Platinum to run for a few hours so that the temperature in the box becomes stable and only then may you calibrate.

There are two ways of calibrating the sensor to 0:

- **Software calibration:** 130 ± 40
- **Hardware calibration:** Adjust trimmer
NOTE: A/D Counts of 130 ± 40 is considered a good calibration.

Calibrate the static pressure physically using the calibration screw on the sensor card prior to completing the software calibration.

- **Hardware Calibration:** With air hoses removed, adjust the zero pressure reading to approximately 130 by turning the calibration screw with a small jewelers screwdriver.
- **Software Calibration:** After hardware calibration, follow the procedure given by the controller.

The calibration procedure adjusts the zero pressure reading. The static pressure sensor is located inside the controller in the upper left hand corner to the left of the power supply.
9.5 Light Sensor Calibration

NOTE: This feature is only available in Version 3.03 and higher.

Installing a light sensor enables turning off the lights when there is sufficient outside light.

To calibrate the light sensor:
1. Place the sensor in the required location.
2. Go to Service > Light Sensor Calibration.
3. When the outside light is bright enough, press Enter.
The Light Sensor is calibrated.

9.6 Feed Calibration

The Platinum can use feed bin scales or less expensive digital monitoring devices to keep track of your feed. This menu calibrates the digital monitoring devices.

To calibrate the digital monitoring device:
1. Select the feed counting method. Your digital monitoring device may generate a dry contact pulse for each quantity of feed, or it may simply indicate that the feed is running.
2. Enter the quantity of feed per pulse in case you use a dry contact pulse. Otherwise, enter the amount of feed delivered per minute of auger operation.
3. Select one of the following:
 - **Pulse**: Weight per pulse
 - **Time**: Weight per minute
 - **Current Sense**: Motor run time when the auger contains feed
4. Enter quantity (weight per minute or per pulse).

<table>
<thead>
<tr>
<th>FEED CALIBRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
</tr>
<tr>
<td>Method Factor</td>
</tr>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>TIME</td>
</tr>
</tbody>
</table>

Method Pulse: Weight per Pulse
Method Time: Weight per Minute
Method Current: Weight per Minute

NOTE: Version 4.05 and higher supports feed calibration using Current Sense.
9.7 Water Calibration

The Platinum supports up to four dry contact pulse output water meters. Enter the quantity of water per pulse for your water meters.

<table>
<thead>
<tr>
<th>WATER CALIBRATION</th>
<th>Water 1 - Water Per Pulse</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water 2 - Water Per Pulse</td>
<td>2.203</td>
<td></td>
</tr>
<tr>
<td>Cool Pad - Water Per Pulse</td>
<td>2.203</td>
<td></td>
</tr>
<tr>
<td>Fogger - Water Per Pulse</td>
<td>2.203</td>
<td></td>
</tr>
</tbody>
</table>

9.8 Vent Calibration

This menu enables calibrating the vent. After pressing ENTER on the desired vent to calibrate, WAIT for the vent to (1) fully close; (2) fully open; and (3) fully close again.

<table>
<thead>
<tr>
<th>VENT CALIBRATION</th>
<th>MIN</th>
<th>POS.</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Vent</td>
<td>351</td>
<td>351</td>
<td>1000</td>
</tr>
<tr>
<td>1st Vent</td>
<td>0</td>
<td>351</td>
<td>1000</td>
</tr>
<tr>
<td>1st Vent</td>
<td>0</td>
<td>351</td>
<td>1000</td>
</tr>
</tbody>
</table>

9.9 Nipple Flushing

To use this selection, program the water solenoids using the following relay codes:

- **111 Water Main**: The control's supplementary for the usual water line
- **112 Water Bypass**: The control's supplementary to bypass the water pressure regulator
- **113 Water line 1 through 122 Water line 10**: Individual water line supplementary to select the line to flush
During normal operation, only relay 111 water main is active. During flushing relay, code 112 is active together with each of the individual water line relays in turn.

NOTE: Configure up to 20 flush times.

- Set start time/duration of water flushing (water lines as defined by relay layout)

NIPPLE FLUSHING

<table>
<thead>
<tr>
<th>Start Time</th>
<th>On Time (min)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:00</td>
<td>2</td>
<td>AUTO</td>
</tr>
<tr>
<td>15:40</td>
<td>1</td>
<td>AUTO</td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>AUTO</td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>AUTO</td>
</tr>
<tr>
<td>00:00</td>
<td>0</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

9.9.1 Nipple Flushing Help | Set Definitions

- **Flush Order:** Set flushing according to line/order
- **Flushing Days:** Set flushing per day using ‘+/−’ key
9.10 Feeders & Drinkers

This selection enables inserting relevant information regarding feeder and drinker lines.

- **Day**: Insert day number.
- **Window Pos (%)**: Insert the percentage of window’s position.
- **Feeder-Line Lift (Inch)**: Define the specific feed line lift, measured in inches.
- **Drinker-Line Lift (Inch)**: Define the specific drinker line lift, measured in inches.

9.10.1 Feeders & Drinkers Help | Set Definitions

- **Adjust at Time**: Set the desired time to adjustment.

Feeder Window

- **Stop Feed Before Adjust (min)**: Set the amount of time to stop feeding before adjustment begins.
- **Time from Close to Open (sec)**: Set the amount of time after stopping the feeding before opening the feeder’s window.

Feed Line

- **Movement Time per 10 inch (sec)**: Set a number of seconds needed to move the feed line 10 inches.
Drinker Lines

- **Movement time per 10 inch (sec):** Set a number of seconds needed to move the drinker lines in 10 inches.

9.11 Save Settings to Plug

This menu enables the user to save his program settings to the included data plug and transport them to another controller for quick programming.

1. **Insert** data plug as shown.
2. **Save** controller settings.

9.12 Read from Plug

This menu enables reading a saved program from a data plug into the controller quickly and reliably rather than configuring the settings manually.

NOTE: Make sure that the program data is identical to the relay layout of the controller.

- Follow the instructions given on the screen.
9.13 Current Sense Relay Calibration

NOTE: Version 4.03 and higher supports this feature. The Current Sense relays supports single phase electricity only.

This menu calibrates the amount of current that passes through Current Sense relays. Calibration enables configuring the minimum and maximum permissible currents.

To calibrate the current sense relay:
1. Define the relay (refer to Relay Layout, page 84).
2. Select Service > Relay Current Cal. The following screen appears.

 - Relay Function
 - Measure
 - Current
 - ON
 - 31 Heat 6 Start 0.0
 - 32 Heat 7 Start 0.0
 - 33 Heat 8 Start 0.0
 - 34 Exh. Fan 5 Start 0.0
 - 35 Exh. Fan 6 Start 0.0

 Warning!!!
 The selected equipment will be turned ON now for current reading adjustment.
 WAIT till operation completion for 15 sec.
 Verify that the relay switch is AUTO.

3. Select a relay and click Enter.

NOTE: The relay must be set to Auto.

4. Repeat for each current sense relay.
5. To set the minimum and maximum voltages, alarms and 110/220 voltage, refer to Relay Current, page 57.

RELAY CURRENT CALIBRATION

<table>
<thead>
<tr>
<th>Relay Function</th>
<th>Measure</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Heat 6</td>
<td>Done</td>
<td>0.2</td>
</tr>
<tr>
<td>32 Heat 7</td>
<td>Done</td>
<td>0.2</td>
</tr>
<tr>
<td>33 Heat 8</td>
<td>Done</td>
<td>0.2</td>
</tr>
<tr>
<td>34 Exh. Fan 1</td>
<td>Done</td>
<td>3.8</td>
</tr>
<tr>
<td>35 Exh. Fan 2</td>
<td>Done</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Warning!!!
The selected equipment will be turned ON now for current reading adjustment WAIT till operation completion for 15 sec.
Verify that the relay switch is AUTO
10 INSTALL MENU

The Install Menu items are used when installing input and output devices, as well as configuring critical parameters needed to run your controller properly.

- Setup, page 83
- Relay Layout, page 84
- Analog Sensors, page 87
- Digital Sensors, page 87
- Analog Output, page 88
- Curtain Setup, page 88
- Temperature Definition, page 88
- Fan Air Capacity, page 89
- House Dimensions, page 90
- Communication, page 90

10.1 Setup

To set the VENTILATION MODE, perform a Cold Start.

To perform a Cold Restart:
1. Turn controller power off.
2. Press and hold DELETE and turn controller power on.
3. Press Yes to confirm the Cold Start.

After the Cold Start, select the Ventilation Mode.

Set the following:

- **Temperature Unit**
 Celsius / Fahrenheit
- **Static Pressure Unit**
 Milibar / Inches of WC (Water Column) / Pascal / cm of WC / mm of WC / None
- **Fan Air Capacity Unit**
 Cubic feet per minute (CFM) / Cubic meter per hour (M3/H)
- **Length Unit**
 Meter / Feet
- **Weight Unit**
 Pounds (LB) / Kilograms (KG)
- **Growing Zones**
 1/2/3/4
- **Minimum Vent (Power)**
 YES (power) / NO
- **Natural Ventilation**
 YES / NO
- **Tunnel**
 YES / NO

<table>
<thead>
<tr>
<th>INSTALLATION</th>
<th>SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SETUP</td>
<td>VENTILATION MODE</td>
</tr>
<tr>
<td>2. RELAY LAYOUT</td>
<td>Language</td>
</tr>
<tr>
<td>3. ANALOG SENSORS</td>
<td>Temperature Unit</td>
</tr>
<tr>
<td>4. DIGITAL SENSORS</td>
<td>Static Pressure Unit</td>
</tr>
<tr>
<td>5. ANALOG OUTPUT</td>
<td>Fan Air Capacity Unit</td>
</tr>
<tr>
<td>6. CURTAIN SETUP</td>
<td>Length Unit</td>
</tr>
<tr>
<td>7. TEMP DEFINITION</td>
<td>Weight Unit</td>
</tr>
<tr>
<td>8. FAN AIR CAPACITY</td>
<td>Growing Zones (1-4)</td>
</tr>
<tr>
<td>9. HOUSE DIMENSIONS</td>
<td>Minimum Vent (Power)</td>
</tr>
<tr>
<td>10. COMMUNICATION</td>
<td>Natural Ventilation</td>
</tr>
<tr>
<td></td>
<td>Tunnel</td>
</tr>
<tr>
<td></td>
<td>History Resolution</td>
</tr>
</tbody>
</table>
10.2 Relay Layout

Use this menu to define the devices connected to the controller. There are (up to) 40 available relays.

NOTE: Up to 40 more relays can be added when using the Platinum Extension.

1. Select the requested choice from the menu list by using the up/down cursor keys (refer to Output Function List, page 84).
2. If the required code is 100 and above, use the ‘+/-’ keys before selecting and then press a two digit number. For example 135 would be +/-35.
3. To duplicate relays use the ‘As Relay # X’ where ‘X’ stands for a relay number defined already in the system.

- Enter relays according to equipment installation (I/O list of technician) using up/down arrow keys.
- If you have installed Current Sense relays, Platinum defines them automatically. Current sense relays transmit to the user’s PC the amount of the current being passed to the relay and send alarms when the current is too low or too high. In addition, you can view the daily electricity consumption in History. Refer to Current Sense Relay Calibration, page 81 for calibration instructions.

NOTE: Version 4.03 and higher supports this feature. The Current Sense Relays support single phase electricity only.

NOTE: Version 4.05 and higher supports four augers and four feed lines.

10.2.1 Output Function List

<table>
<thead>
<tr>
<th>Number</th>
<th>Output Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 16</td>
<td>Heaters 1 – 16</td>
</tr>
<tr>
<td>17 – 64</td>
<td>Radiant Heaters (Lo/Hi/Ign) 1 – 16</td>
</tr>
<tr>
<td>65 – 84</td>
<td>Tunnel Fan 1 – 20</td>
</tr>
<tr>
<td>85 – 94</td>
<td>Exhaust Fan 1 – 20</td>
</tr>
<tr>
<td>95 – 109</td>
<td>Stir Fan 1 – 15</td>
</tr>
<tr>
<td>110 – 113</td>
<td>Cool 1 – 4</td>
</tr>
<tr>
<td>114 – 117</td>
<td>Cool Pad 1 – 4</td>
</tr>
</tbody>
</table>

Table 1: Versions 4.04 and Below
Table 1: Versions 3.00 and higher

<table>
<thead>
<tr>
<th>Number</th>
<th>Output Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>118 – 121</td>
<td>Fogger 1 – 4</td>
</tr>
<tr>
<td>122 – 129</td>
<td>Curtain 1 – 4 (Open/Close)</td>
</tr>
<tr>
<td>130 – 133</td>
<td>Extra System 1 – 4</td>
</tr>
<tr>
<td>134 – 135</td>
<td>Tunnel Curtain (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>136 – 137</td>
<td>1st Inlet (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>138 – 139</td>
<td>2nd Inlet (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>140 – 143</td>
<td>Water 1 – 4</td>
</tr>
<tr>
<td>144 – 145</td>
<td>Feeder 1 - 2</td>
</tr>
<tr>
<td>146 – 149</td>
<td>Light 1 - 4</td>
</tr>
<tr>
<td>150 – 151</td>
<td>Auger 1 - 2</td>
</tr>
<tr>
<td>152 – 153</td>
<td>Feeder Window (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>154 – 155</td>
<td>Feeder Line (Up/Down) 1 - 2</td>
</tr>
<tr>
<td>156 – 157</td>
<td>Drink Line (Up/Down) 1 - 2</td>
</tr>
<tr>
<td>158</td>
<td>Alarm (N.C.)</td>
</tr>
<tr>
<td>159</td>
<td>Water Main</td>
</tr>
<tr>
<td>160</td>
<td>Water Bypass</td>
</tr>
<tr>
<td>161 – 170</td>
<td>Water Line 1 – 10</td>
</tr>
<tr>
<td>171</td>
<td>Vent Speed</td>
</tr>
<tr>
<td>172 – 173</td>
<td>Attic Inlet (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>174</td>
<td>Fail Safe</td>
</tr>
<tr>
<td>175 – 254</td>
<td>As Relay # 1 – 80</td>
</tr>
</tbody>
</table>

Table 2: Versions 4.05

<table>
<thead>
<tr>
<th>Number</th>
<th>Output Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 16</td>
<td>Heaters 1 – 16</td>
</tr>
<tr>
<td>17 – 64</td>
<td>Radiant Heaters (Low/High/Ignite) 1 - 16</td>
</tr>
<tr>
<td>65 – 84</td>
<td>Tunnel Fan 1 – 20</td>
</tr>
<tr>
<td>85 – 94</td>
<td>Exhaust Fan 1 – 20</td>
</tr>
<tr>
<td>95 – 109</td>
<td>Stir Fan 1 – 15</td>
</tr>
<tr>
<td>110 – 113</td>
<td>Cool 1 – 4</td>
</tr>
<tr>
<td>114 – 117</td>
<td>Cool Pad 1 – 4</td>
</tr>
<tr>
<td>118 – 121</td>
<td>Fogger 1 – 4</td>
</tr>
<tr>
<td>122 – 129</td>
<td>Curtain 1 – 4 (Open/Close)</td>
</tr>
<tr>
<td>130 – 133</td>
<td>Extra System 1 – 4</td>
</tr>
<tr>
<td>134 – 135</td>
<td>Tunnel Curtain (Open/Close)</td>
</tr>
<tr>
<td>136 – 137</td>
<td>1st Inlet (Open/Close)</td>
</tr>
</tbody>
</table>
Number Output Function

<table>
<thead>
<tr>
<th>Number</th>
<th>Output Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>138 – 139</td>
<td>2nd Inlet (Open/Close)</td>
</tr>
<tr>
<td>140 – 143</td>
<td>Water 1 – 4</td>
</tr>
<tr>
<td>144 – 147</td>
<td>Feeder 1 – 4</td>
</tr>
<tr>
<td>148 – 151</td>
<td>Light 1 – 4</td>
</tr>
<tr>
<td>152 – 155</td>
<td>Auger 1 – 4</td>
</tr>
<tr>
<td>156 – 157</td>
<td>Feeder Window (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>158 – 159</td>
<td>Feeder Line (Up/Down) 1 - 2</td>
</tr>
<tr>
<td>160 – 161</td>
<td>Drink Line (Up/Down) 1 - 2</td>
</tr>
<tr>
<td>162</td>
<td>Alarm (N.C.)</td>
</tr>
<tr>
<td>163</td>
<td>Water Main</td>
</tr>
<tr>
<td>164</td>
<td>Water Bypass</td>
</tr>
<tr>
<td>165 – 174</td>
<td>Water Line 1 – 10</td>
</tr>
<tr>
<td>175</td>
<td>Vent Speed</td>
</tr>
<tr>
<td>176 – 177</td>
<td>Attic Inlet (Open/Close) 1 - 2</td>
</tr>
<tr>
<td>178</td>
<td>Fail Safe (NC)</td>
</tr>
<tr>
<td>179 – 182</td>
<td>WOD 1/2/3/4</td>
</tr>
<tr>
<td>183 - 262</td>
<td>As Relay # 1 – 80</td>
</tr>
</tbody>
</table>

10.2.2 Relay Layout – Help | Set Definitions

- Define relay operation mode: DC or AC.

NOTE: AC mode produces less heat in the controller box.

- Define five relays to be inversed by software.
10.3 Analog Sensors

This selection enables the user to install the analog sensors. The Platinum regards temperature, humidity, and CO2 sensors and circuit breaker as 'Analog sensors. These sensors measure a continuous range rather than just on or off.

- Enter temperature / humidity sensors wired to each input (setup according to technician).

NOTE: If sensor numbers duplicate, the sensors average.

NOTE: Version 3.02 and higher support CO2 sensors.

10.4 Digital Sensors

This option enables configuring the installed digital sensors. These sensors monitor both water and feed consumption if the building is equipped accordingly. Digital inputs include on/off and pulsing inputs such as auxiliary alarms, pulsing water meters and feed.

- Enter sensors wired to each input (setup according to technician)
- Example: Digital sensor installation

NOTE: Version 3.03 supports four water meters.
10.5 Analog Output

This selection controls light dimmers, variable speed fans and variable heaters. Select the desired 'Output Function' from the menu list and insert the approximate output voltages.

- Enter sensors wired to each input (setup according to technician).
- The above is an example of an analog output configuration

NOTE: Version 4.05 and higher supports up to four variable stir fans. Previous versions support up to two fans.

- To configure the light dimmers, refer to Light, page 43.
- To configure the variable speed fans, refer to Stir Fan Levels, page 36.
- To configure the variable heaters, refer to Temperature Curve Help | Set Definitions, page 17.

Analog Output

<table>
<thead>
<tr>
<th>No.</th>
<th>Output Function</th>
<th>Min V. Out</th>
<th>Max V. Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Light Dimmer 1</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>Light Dimmer 2</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>Light Dimmer 3</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4</td>
<td>Light Dimmer 4</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>Var. Stir Fan 1</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>Var. Stir Fan 2</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>7</td>
<td>Var. Stir Fan 3</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8</td>
<td>Var. Stir Fan 4</td>
<td>0.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

10.6 Curtain Setup

Enter the number of seconds to open and close from limit to limit for each of the Vents and Curtains in your installation. The Platinum then calculates the percentage of open and closed time and adjusts the static pressure methods accordingly.

- Set full open/full close time (in seconds) for Curtains, Tunnel, 1st & 2nd Vent, and Attic Vent.

NOTE: Default is set at 60.

10.7 Temperature Definition

This menu assigns specific temperature sensors for various brood setups and for heater zones. Moreover, assigning sensors to particular devices is possible. Note that if the sensors selection remains blank, the default value is assigned.

Choose 1 to 18 temperature sensors for each item listed by using the ‘+/−’ keys. The house, brooding and tunnel sensors cause the current average to apply to devices when no specific sensor is assigned to them. The current average substitutes for either failed or missing sensors.
NOTE: Sensors 10 – 18 require installing a second analog card.

<table>
<thead>
<tr>
<th>TEMPERATURE DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>FULL HOUSE</td>
</tr>
<tr>
<td>TUNNEL SETTING</td>
</tr>
<tr>
<td>ATTIC</td>
</tr>
<tr>
<td>OUTSIDE</td>
</tr>
</tbody>
</table>

- Press +/- key to add/remove ✓ to assign temperature sensors to corresponding function.

NOTE: If you are using two (2) input analog cards, the screen displays Temp. Sensor(s) 1-18 (refer to above screen capture).

NOTE: When an attic sensor is not installed, the attic vent is disabled.

Assign Temperature Sensors as required in Install | Temp Definition. Devices that do not accept temperature sensors, such as Exhaust Fans, Tunnel Fans, Feed and Light do not appear.

Note that Exhaust Fans and Tunnel Fans do not appear because the Ventilation Levels defined in Device | Levels of Ventilation control their operation. Stir Fans appear even though the Device | Stir Fan Levels apply to them because they simultaneously operate according Device | Stir Fan Programs where specific sensor assignments are required in Program B and recommended in Program C.

10.8 Fan Air Capacity

This option enables defining the fans’ air capacity. Insert fan air capacity for both the exhaust and tunnel fans. The units are as chosen in INSTALL | SETUP.

<table>
<thead>
<tr>
<th>FAN AIR CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan</td>
</tr>
<tr>
<td>Tun. Fan 1</td>
</tr>
<tr>
<td>Tun. Fan 2</td>
</tr>
<tr>
<td>Tun. Fan 3</td>
</tr>
<tr>
<td>Tun. Fan 4</td>
</tr>
<tr>
<td>Tun. Fan 5</td>
</tr>
<tr>
<td>Tun. Fan 6</td>
</tr>
<tr>
<td>Tun. Fan 7</td>
</tr>
<tr>
<td>Tun. Fan 8</td>
</tr>
<tr>
<td>Tun. Fan 9</td>
</tr>
<tr>
<td>Tun. Fan 10</td>
</tr>
</tbody>
</table>

- Define air capacity for exhaust/tunnel fans (default setting shown above).

NOTE: This information enables the display of air capacity for each level in the Levels of Ventilation table (Precision ONLY).
10.9 House Dimensions

The selection allows the user to set its' house dimensions. Set it according to actual house size. These dimensions are used for calculating the wind chill factor (the chilling effect of the wind that can significantly lower the temperature).

- Define height, width, and length of house (Controller calculates total area).

NOTE: This information enables the calculation of the Wind Chill factor displayed in Hot Screen Key = 2 (Tunnel mode ONLY).

10.10 Communication

This menu defines the communication parameters.

- **Baud rate:** This parameter is a measure of the communication speed for local or remote communications to a PC. The default is 9600 represents a data rate of approximately 1000 characters per second. If the connection fails at this speed, try a lower speed.

- **House number:** Each controller on a network must have a unique number so Rotem's PlatiNet communications software can distinguish individual controllers. Note that these numbers are from 1 to 64.
Table 3: Sensor Readings

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>Displayed with the specific sensor number</td>
</tr>
<tr>
<td>Out T.</td>
<td>Outside temperature</td>
</tr>
<tr>
<td>Press.</td>
<td>Pressure</td>
</tr>
<tr>
<td>Hum. In</td>
<td>Inside humidity</td>
</tr>
<tr>
<td>Hum. Out</td>
<td>Outside humidity</td>
</tr>
<tr>
<td>Weight</td>
<td>Average weight</td>
</tr>
<tr>
<td>Weights</td>
<td>Number of weights</td>
</tr>
<tr>
<td>E. Tmp1</td>
<td>Temperature related to emergency card 1</td>
</tr>
<tr>
<td>E. Tmp2</td>
<td>Temperature related to emergency card 2</td>
</tr>
<tr>
<td>Breaker</td>
<td>Circuit breaker</td>
</tr>
</tbody>
</table>

Table 4: Output List (Active)

<table>
<thead>
<tr>
<th>Output</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Can be either active or not. Note that this always appears last.</td>
</tr>
<tr>
<td>Heat</td>
<td>Indicates operating heat number</td>
</tr>
<tr>
<td>Heat. Hi</td>
<td>Indicates operating heat high number</td>
</tr>
<tr>
<td>Tun. Fan</td>
<td>Indicates operating tunnel fan number</td>
</tr>
<tr>
<td>Exh. Fan</td>
<td>Indicates operating exhaust fan number</td>
</tr>
<tr>
<td>Stir</td>
<td>Indicates operating stir fan number</td>
</tr>
<tr>
<td>Cool P.</td>
<td>Indicates operating cool pad number</td>
</tr>
<tr>
<td>Fogger</td>
<td>Indicates operating fogger number</td>
</tr>
<tr>
<td>Inlet</td>
<td></td>
</tr>
<tr>
<td>Tunnel</td>
<td></td>
</tr>
<tr>
<td>Curt.</td>
<td>Mentions opening percentage</td>
</tr>
<tr>
<td>Ext. Sys</td>
<td>Indicates operating external system number</td>
</tr>
<tr>
<td>Light</td>
<td>Note that these mention output percentage</td>
</tr>
<tr>
<td>Water</td>
<td>Indicates operating water number</td>
</tr>
<tr>
<td>Feed</td>
<td>Indicates operating feed number</td>
</tr>
<tr>
<td>Auger</td>
<td>Indicates operating auger number</td>
</tr>
<tr>
<td>Rad. Lo</td>
<td>Indicates operating radiant heat low number</td>
</tr>
<tr>
<td>Rad. Hi</td>
<td>Indicates operating radiant heat high number</td>
</tr>
</tbody>
</table>
Table 5: Status Readings

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Specific time</td>
</tr>
<tr>
<td>Day</td>
<td>Growth day</td>
</tr>
<tr>
<td>Set</td>
<td>Target temperature</td>
</tr>
<tr>
<td>Offset</td>
<td>Temperature Curve HELP</td>
</tr>
<tr>
<td>House mode</td>
<td>Control Mode HELP</td>
</tr>
<tr>
<td>Level</td>
<td>Level number</td>
</tr>
<tr>
<td>Tunnel, Natural, Min. Vent</td>
<td>The controller's state</td>
</tr>
<tr>
<td>Fan Off</td>
<td>How long the cycle ends its' operation</td>
</tr>
<tr>
<td>Fan On</td>
<td>How long the cycle begins its' operation</td>
</tr>
<tr>
<td>Curve off</td>
<td>Occurs when located in low curve temperature or when the Control Mode HELP</td>
</tr>
<tr>
<td>Hum. Treat</td>
<td>Indicates when treatment occurs</td>
</tr>
<tr>
<td>Cool flush</td>
<td>Indicates when flush occurs</td>
</tr>
<tr>
<td>Nip. Flush</td>
<td>Indicates when flush occurs</td>
</tr>
</tbody>
</table>

Table 6: Table of Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Event Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off</td>
<td>Appears when power is off</td>
</tr>
<tr>
<td>Power On</td>
<td>Appears when power is on</td>
</tr>
<tr>
<td>Cold Start</td>
<td>Appears when cold start is done</td>
</tr>
<tr>
<td>Change level to vent</td>
<td>Changes according to a specific stage</td>
</tr>
<tr>
<td>Backup set reminder</td>
<td>HELP</td>
</tr>
<tr>
<td>Alarm on</td>
<td>Appears when the alarm is on</td>
</tr>
<tr>
<td>Change in setting</td>
<td></td>
</tr>
<tr>
<td>Change in switches</td>
<td>Relay switch setting changed</td>
</tr>
<tr>
<td>New flock</td>
<td>Appears when new flock is updated</td>
</tr>
<tr>
<td>Reset alarm</td>
<td>Appears when reset alarm is done</td>
</tr>
<tr>
<td>System message #</td>
<td>For Rotem's technicians only</td>
</tr>
<tr>
<td>Alarm card fail</td>
<td>Appears when the alarm card fails</td>
</tr>
<tr>
<td>Digital card fail</td>
<td>Appears when the digital card fails</td>
</tr>
<tr>
<td>Memory restore</td>
<td>Appears when the system does restore cause by noises</td>
</tr>
<tr>
<td>Minimum ventilation</td>
<td>Appears when minimum ventilation occurs</td>
</tr>
<tr>
<td>Natural ventilation</td>
<td>Appears when entering natural ventilation</td>
</tr>
<tr>
<td>Tunnel ventilation</td>
<td>Appears when entering tunnel ventilation</td>
</tr>
<tr>
<td>Alarm test</td>
<td>Appears when alarm test completes</td>
</tr>
<tr>
<td>Precision Mode</td>
<td>Switch to Precision Mode</td>
</tr>
<tr>
<td>Event</td>
<td>Event Explanation</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Standard Mode</td>
<td>Switch to Standard Mode</td>
</tr>
<tr>
<td>Changed growth day</td>
<td>Appears when changing the growth day occurs</td>
</tr>
<tr>
<td>MinV L.P Alarm Dis.</td>
<td>Appears when minimum low pressure alarm is disabled</td>
</tr>
<tr>
<td>MinV L.P Alarm Ena</td>
<td>Appears when minimum low pressure alarm is enabled</td>
</tr>
<tr>
<td>Tun. L.P Alarm Dis.</td>
<td>Appears when tunnel low pressure alarm is disabled</td>
</tr>
<tr>
<td>Tun L.P Alarm Ena.</td>
<td>Appears when tunnel low pressure alarm is enabled</td>
</tr>
<tr>
<td>Visitor Log in</td>
<td>Appears when the visitor logs in with his password</td>
</tr>
<tr>
<td>User #1-5 log in</td>
<td>Appears when the user logs in with his password</td>
</tr>
<tr>
<td>Owner log in</td>
<td>Appears when the owner logs in with his password</td>
</tr>
<tr>
<td>Change Visitor pass</td>
<td>Appears when the visitor changed his password.</td>
</tr>
<tr>
<td>Change User #1-5 pass</td>
<td>Appears when the user changed his password</td>
</tr>
<tr>
<td>Change Owner pass</td>
<td>Appears when the owner changed his password</td>
</tr>
<tr>
<td>Data read from plug</td>
<td>Appears when data is read from plug</td>
</tr>
<tr>
<td>System recover</td>
<td>Appears when the system tries to recover itself, in cases such as noises</td>
</tr>
<tr>
<td>System lock</td>
<td>Appears when either using the correct password, or when using hot key '9,' or automatically after 5 minutes</td>
</tr>
<tr>
<td>Empty house mode</td>
<td>Appears when setting at a specific time</td>
</tr>
</tbody>
</table>